Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 16PQ
To determine
Whether the gravitational force of the Sun on an asteroid or the gravitational force of an asteroid on Sun is greater.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Write down an expression for the gravitational filed strength of a planet of radius R and density p. Please use "*" for products (e.g. B*A), "/" for ratios
(e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as p and use rho and pi. For gravitational
constant, please use G. Please use the "Display response" button to check you entered the answer you expect.
Display response
Write down an expression for the gravitational filed strength of a planet of radius R and density ρ. Please use "*" for products (e.g. B*A), "/" for ratios (e.g. B/A) and the usual "+" and "-" signs as appropriate without the quotes). For Greek letters such as ?ρ and ?π use rho and pi. Please use the "Display response" button to check you entered the answer you expect
For the following questions,
start your analyses by considering at least Newton's Law of Gravitation, centripetal
acceleration, Kepler's law or Energy Conservation. Take the Gravitational constant to be a.
From Earth we can measure the radius of Mars using our telescopes. An estimate for it is 3.39 x
106 m. By sending an exploratory robot to Mars, we determined the acceleration due to gravity
on its surface as 3.73 m/s?. Estimate the mass of Mars. b. The Earth revolves around the Sun
once a year at a distance of 1.50 x 1011 m. Estimate the mass of the Sun. c. A rocket is
launched straight up from Earth's surface at 2100 m/s. By ignoring air resistance, determine
the maximum height it reaches?
Chapter 7 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 7.1 - What important experimental skills can we learn...Ch. 7.2 - Three possible planetary orbits are shown in...Ch. 7.2 - Prob. 7.3CECh. 7.2 - Prob. 7.4CECh. 7.2 - Todays employees are rewarded for thinking outside...Ch. 7 - We use the terms sunset and sunrise. In what way...Ch. 7 - Prob. 2PQCh. 7 - For many years, astronomer Percival Lowell...Ch. 7 - Prob. 4PQCh. 7 - Prob. 5PQ
Ch. 7 - Io and Europa are two of Jupiters many moons. The...Ch. 7 - Model the Moons orbit around the Earth as an...Ch. 7 - Prob. 8PQCh. 7 - Prob. 9PQCh. 7 - Prob. 10PQCh. 7 - Prob. 11PQCh. 7 - Prob. 12PQCh. 7 - A massive black hole is believed to exist at the...Ch. 7 - Since 1995, hundreds of extrasolar planets have...Ch. 7 - When Sedna was discovered in 2003, it was the most...Ch. 7 - Prob. 16PQCh. 7 - The mass of the Earth is approximately 5.98 1024...Ch. 7 - Prob. 18PQCh. 7 - Prob. 19PQCh. 7 - A black hole is an object with mass, but no...Ch. 7 - Prob. 21PQCh. 7 - Prob. 22PQCh. 7 - The Lunar Reconnaissance Orbiter (LRO), with mass...Ch. 7 - A Suppose a planet with mass m is orbiting star...Ch. 7 - Prob. 25PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Saturns ring system forms a relatively thin,...Ch. 7 - Prob. 28PQCh. 7 - Find the magnitude of the Suns gravitational force...Ch. 7 - Prob. 30PQCh. 7 - Prob. 31PQCh. 7 - Prob. 32PQCh. 7 - Prob. 33PQCh. 7 - Prob. 34PQCh. 7 - Prob. 35PQCh. 7 - In your own words, describe the difference between...Ch. 7 - The Sun has a mass of approximately 1.99 1030 kg....Ch. 7 - Prob. 38PQCh. 7 - Prob. 39PQCh. 7 - Prob. 40PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Prob. 42PQCh. 7 - Prob. 43PQCh. 7 - Prob. 44PQCh. 7 - Figure P7.45 shows a picture of American astronaut...Ch. 7 - Prob. 46PQCh. 7 - Prob. 47PQCh. 7 - Prob. 48PQCh. 7 - Prob. 49PQCh. 7 - Prob. 50PQCh. 7 - The International Space Station (ISS) experiences...Ch. 7 - Prob. 52PQCh. 7 - Two black holes (the remains of exploded stars),...Ch. 7 - Prob. 54PQCh. 7 - Prob. 55PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 57PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 59PQCh. 7 - You are a planetary scientist studying the...Ch. 7 - Prob. 61PQCh. 7 - Prob. 62PQCh. 7 - Planetary orbits are often approximated as uniform...Ch. 7 - Prob. 64PQCh. 7 - Prob. 65PQCh. 7 - Prob. 66PQCh. 7 - Prob. 67PQCh. 7 - Prob. 68PQCh. 7 - Prob. 69PQCh. 7 - Prob. 70PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Hi, I'm not sure how to go about solving part b. but I have part a. Please show step by step of part b.arrow_forwardIn 1993 the Galileo spacecraft sent home an image of asteroid "243 Ida" and a tiny moon "Dactyl" orbiting the asteroid. Assume that the small moon orbits in a circle with a radius of r = 100 km from the center of the asteroid with an orbital period of T = 27 hours. a. Show and explain how we derived Kepler's 3rd law using Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force. b. Use your result for Kepler's 3rd Law to determine the mass of the asteroid. c. If the asteroid has a radius of about 16 km calculate the approximate value for the acceleration due to gravity, g, on its surface. d. What velocity would you need to achieve in order to lift off and leave this asteroid? e. Use Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force to determine an expression for circular orbital velocity. f. What is the orbital velocity of the small moon if we assume it is in a circular orbit?arrow_forwardPlease help with the following questions as they are related to one another. Thank you very much!arrow_forward
- Solve the given problem about gravitational field. Show your solution and please write legibly. Problem: What is the gravitational field strength at the surface of Jupiter (mass 1.9x1027 kg, radius 7.1x 107m)arrow_forwardA) When one object is orbiting a much larger object, the period of the orbit (T) is related to the semi‐major axis (r) by the general form of Kepler’s 3rd Law. Write this general form in the space below: B) What units must the period be in if we want to calculate the semi-major radius in meters? Note that G = 6.67 x 10-11 N m2/kg2. Complete problems using Kepler’s 3rd law as you wrote it down above:arrow_forwardGiven the diagram determine the direction and then the magnitude of the net gravitational force on "m." (Both M's have the same mass). Draw a coordinate system centered on the little mass and make a freebody diagram. (You can follow the steps for finding components and summing forces). Just in case it is hard to read, the angles are 40 degrees and 30 degrees. r1 = 500 million meters r2 = 600 million meters m = 7x1022 kg M= 2x1027 kgarrow_forward
- You are completing a report for NASA on the mass and weight of various objects on different planets. What can you determine about the relationship between mass and gravity? What can you determine about the relationship between weight and gravity? Provide evidence to support your observations using the gravitational values below.Gravitational Values for Select Planets Mercury: 3.7 m/s ^ 2 Venus: 8.9 m/s ^ 2 Mars: 3.7 m/s ^ 2 Neptune: 11.0 m/s ^ 2arrow_forwardEarth's orbit is (on average) 1 Astronomical Unit from the Sun. For reference, 1 Astronomical Unit is about 93 million miles. Jupiter's orbit is about 5 Astronomical Units from the Sun. Suppose that the gravitational force between the Earth and the Sun is equal to 50,000 N (it's way more than that but we are just pretending here). If we move Earth to Jupiter's orbit, what will be the new value of the gravitational force between the Earth and the Sun? Remember to include units of force (Newtons or N) in your answer.arrow_forwardAnswer the two questions below and write the solution. a. An astronaut is tasked to compute the gravitational acceleration of planet Z. After landing, he dropped a test object from a height of 2 meters and the time duration of the drop was 1 second. What is the gravity of planet Z in m/s^2? b. If the astronaut jumped upward with an initial velocity of 8m/s, how high is the jump? in metersarrow_forward
- Halley's Comet orbits the sun about every 75 years due to the gravitational force the sun provides. Compare the gravitational force between Halley's Comet and the sun when the comet is at aphelion (its greatest distance from the sun) and d is about 4.5 X 1012 m to the force at perihelion (or closest approach), where d is about 5.0 × 1010 1 m. In Exercise A-1, what is the comet's acceleration a) at aphelion? b) at perihelion? (Ms = 1.99 × 1030 kg) %3Darrow_forwardr r M M 1. What is the gravitational potential energy of the mass (m) in the picture? The mass is the same distance away r from the centers of both of the other masses, and both of the other masses have the same mass, M. Give your answer in Joules. r = 400 million meters m = 7x1022 kg м- 2х1027 kg 2. What is the net gravitational force for the mass m at this location? Give your answer in Newtons.arrow_forwardAnswer all 3 Que:1 Solve the following: a) Mercury has a Semi-major axis length of 5.790905 X 1010 m and a semi-minor axis length of 5.667152 X 1010 m. Calculate Mercury's eccentricity to four significant digits. b) The orbit of Europa around Jupiter has a2= 4.5011 X 1011 and b2= 4.5007 X 1011. Find the eccentricity of Europa to three decimal places. c)When Earth is at aphelion, it is 1.52100 X 108 km from the sun. When it is at perihelion; the earth is 1.47095 X 108 km from the sun. Find the eccentricity of the earth's orbit to three decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY