Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 44PQ
To determine
The final effect of the orbit of the planet around its star when the planet is converted into a black hole.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The following quotation is taken from the article “Quantum Black Holes”, by Bernard J. Carr and Steven B. Giddings, in the
May 2005 issue of Scientific American. "The total time for a black hole to evaporate away is proportional to the cube of its
initial mass. For a solar-mass hole, the lifetime is an unobservably long 1064 years."
a. Recall that the solar mass is 2 × 10³0 kilograms. Write a formula for the lifetime, L, of a black hole as a function of its
mass, m. Start by finding the value of the constant k, then write your function using the letter k (rather than its value in
scientific notation). For example, for a direct variation you would write “L(m) = km”.
k = a × 10¹ where a =
L(m) =
b. The present age
mass = c × 10ª kg, where c =
A
and b =
=
of the universe is about 10¹0 years. What would be the mass of a black hole as old as the universe?
ID
and d
=
J
The Schwarzschild radius, RS, of a black hole depends on its mass m, the speed of light c,and the gravitational constant G (with units m3/(kg s2)).Find a dimensionally correct expression for RS in terms of these quantities.Assuming that you found a dimensionally correct expression, can you be sure that this expression is, in fact, the correct expression for calculating the Schwarzschild radius? Explainyour answer.
The kinetic energy of the ejecta from a supernova explosion is about 10^44 joules. Use the formula for kinetic energy to determine the typical speed at which matter is ejected from a supernova with a mass of 10 Msun. Compare that speed with the Sunʹs orbital speed around our galaxy. Based on your comparison, do you think the galaxyʹs gravity would be strong enough to retain the supernova debris if there were no interstellar medium to slow it down? Explain.
Chapter 7 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 7.1 - What important experimental skills can we learn...Ch. 7.2 - Three possible planetary orbits are shown in...Ch. 7.2 - Prob. 7.3CECh. 7.2 - Prob. 7.4CECh. 7.2 - Todays employees are rewarded for thinking outside...Ch. 7 - We use the terms sunset and sunrise. In what way...Ch. 7 - Prob. 2PQCh. 7 - For many years, astronomer Percival Lowell...Ch. 7 - Prob. 4PQCh. 7 - Prob. 5PQ
Ch. 7 - Io and Europa are two of Jupiters many moons. The...Ch. 7 - Model the Moons orbit around the Earth as an...Ch. 7 - Prob. 8PQCh. 7 - Prob. 9PQCh. 7 - Prob. 10PQCh. 7 - Prob. 11PQCh. 7 - Prob. 12PQCh. 7 - A massive black hole is believed to exist at the...Ch. 7 - Since 1995, hundreds of extrasolar planets have...Ch. 7 - When Sedna was discovered in 2003, it was the most...Ch. 7 - Prob. 16PQCh. 7 - The mass of the Earth is approximately 5.98 1024...Ch. 7 - Prob. 18PQCh. 7 - Prob. 19PQCh. 7 - A black hole is an object with mass, but no...Ch. 7 - Prob. 21PQCh. 7 - Prob. 22PQCh. 7 - The Lunar Reconnaissance Orbiter (LRO), with mass...Ch. 7 - A Suppose a planet with mass m is orbiting star...Ch. 7 - Prob. 25PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Saturns ring system forms a relatively thin,...Ch. 7 - Prob. 28PQCh. 7 - Find the magnitude of the Suns gravitational force...Ch. 7 - Prob. 30PQCh. 7 - Prob. 31PQCh. 7 - Prob. 32PQCh. 7 - Prob. 33PQCh. 7 - Prob. 34PQCh. 7 - Prob. 35PQCh. 7 - In your own words, describe the difference between...Ch. 7 - The Sun has a mass of approximately 1.99 1030 kg....Ch. 7 - Prob. 38PQCh. 7 - Prob. 39PQCh. 7 - Prob. 40PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Prob. 42PQCh. 7 - Prob. 43PQCh. 7 - Prob. 44PQCh. 7 - Figure P7.45 shows a picture of American astronaut...Ch. 7 - Prob. 46PQCh. 7 - Prob. 47PQCh. 7 - Prob. 48PQCh. 7 - Prob. 49PQCh. 7 - Prob. 50PQCh. 7 - The International Space Station (ISS) experiences...Ch. 7 - Prob. 52PQCh. 7 - Two black holes (the remains of exploded stars),...Ch. 7 - Prob. 54PQCh. 7 - Prob. 55PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 57PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 59PQCh. 7 - You are a planetary scientist studying the...Ch. 7 - Prob. 61PQCh. 7 - Prob. 62PQCh. 7 - Planetary orbits are often approximated as uniform...Ch. 7 - Prob. 64PQCh. 7 - Prob. 65PQCh. 7 - Prob. 66PQCh. 7 - Prob. 67PQCh. 7 - Prob. 68PQCh. 7 - Prob. 69PQCh. 7 - Prob. 70PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A neutron star is a cold, collapsed star with nuclear density. A particular neutron star has a mass twice that of our Sun with a radius of 12.0 km. (a) What would be the weight of a 100-kg astronaut on standing on its surface? (b) What does this tell us about landing on a neutron star?arrow_forwardIn 1999, scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun that occupy less space than our moon. Suppose that one of these black holes has a mass of 1×1021×102 suns and a radius equal to one-half the radius of our moon. A)What is the density of the black hole in g/cm3g/cm3? The radius of our sun is 7.0×105km7.0×105km, and it has an average density of 1.4×103kg/m31.4×103kg/m3. The diameter of the moon is 2.16×1032.16×103 miles. 1km=0.6214mile1km=0.6214mile.?arrow_forwardA2. A light beam falls radially inwards towards the center of a black hole. First it passes shell A at a distance rA from the center of the black hole. It then passes the shell B at a distance rB from the center of the black the hole. We call the two shell passes event A and event B. Where large is the time interval between these two events and how can did you figure it out? Explain with a maximum of 3 sentences (plus any equations if you wish).arrow_forward
- A. Use the definition of the center of mass to determine the maximum “wobble” velocity of a star of mass M caused by a planet of mass m orbiting at a distance r from the star with a period T. B. Thanks to Kepler, we know that the mass, period, and distance of an orbiting object are actually related. Use Newton’s version of Kepler’s Third Law to determine the maximum “wobble” velocity in terms of M, m, and r.arrow_forwardA laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=350,000csc(π/30*x). a. Select the graph of g(x) on the interval [0,35]. b. Evaluate g(5). Enter the exact answer. c. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? d. Find and discuss the meaning of any vertical asymptotes on the interval [0,35].arrow_forwardIn 1999, scientists discovered a new class of black holes with masses 100 to 10,000 times the mass of our sun that occupy less space than our moon. Suppose that one of these black holes has a mass of 1x10^3 suns and a radius equal to one-half the radius of our moon. What is the density of the black hole in g/cm^3? The radius of our sun is 7.0x10^5 km, and it has an average density of 1.4x10^3 kg/m^3. The diameter of the moon is 2.16x10^3 miles.arrow_forward
- The Schwarzschild radius RBH for an object of mass M is defined as (See image.) where c is the speed of light and G is the universal gravitational constant. RBH gives the radius of the event horizon of a black hole with mass M. In other words, it gives the radius to which some amount of mass M would need to be compressed in order to form a black hole. 1. The mass of the Sun is about 1.99 × 1030 kg. What would be the radius of a black hole with this mass? 2. The mass of Mars is about 6.42 × 1023 kg. What would be the radius of a black hole with this mass? 3. Suppose you want to make a black hole that is roughly the size of an atom (take RBH = 1.10 x 10-10 m). What would be the mass M of such a black hole?arrow_forwardAs a person approaches the Schwarzschild radius of a black hole, outside observers see all the processes of that person (their clocks, their heart rate, etc.) slowing down, and coming to a halt as they reach the Schwarzschild radius. (The person falling into the black hole sees their own processes unaffected.) But the speed of light is the same everywhere for all observers. What does this say about space as you approach the black hole?arrow_forwardThis is a mathematical problem by converting the distance from the sun to earth then using what ever is given!arrow_forward
- In 1999, scientists discovered a new class of black holes with masses 100 to 10000 times the mass of our sun, but occupying less space than our moon. Suppose that one of these black holes has a mass of 1x10^3 suns and a radius equal to one-half the radius of our moon. What is the density of the black hole in g/cm^3? The radius of our sun is 7.0x10^5km and it has an average density of 1.4x10^3kg/m^3. The diameter of the moon is 2.16x10^3 miles. Note: the volume of a sphere is V=4/3 pie r^3arrow_forwardSuppose that the Earth were collapsed to the size of a small ball bearing, becoming a black hole. a. What would be the orbital period of the Moon, orbiting at a distance of 4x10^5 km? b. What would be the orbital period of a spacecraft orbiting at a distance of 6000 km, the current radius of the Earth? c. What would be the orbital period of a mini-spacecraft orbiting at a distance of 0.1 m above the black hole? Compare the orbital speed in this case to c.arrow_forwardPlease see attachment for full question. I would like some assistance with the approach for this. The Schwarzschild radius ?BH for an object of mass ? is defined as ?BH=2???2 where ? is the speed of light and ? is the universal gravitational constant. ?BH gives the radius of the event horizon of a black hole with mass ?. In other words, it gives the radius to which some amount of mass ? would need to be compressed in order to form a black hole. The mass of the Sun is about 1.99×1030 kg. What would be the radius of a black hole with this mass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY