A diatomic molecule behaves like a quantum harmonic oscillator with the force constant 12.0 N/m and mass
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: Structure and Properties (2nd Edition)
Chemistry: The Central Science (14th Edition)
Applications and Investigations in Earth Science (9th Edition)
- Chemists use infrared absorption spectra to identify chemicals in a sample. In one sample, a chemist finds that light of wavelength 5.8 um is absorbed when a molecule makes a transition from its ground harmonic oscillator level to its first excited level. (a) Find the energy of this transition. (b) If the molecule can be treated as a harmonic oscillator with mass 5.6 * 10-26 kg, find the force constant.arrow_forwardA certain atom remains in an excited state for about 51.7 ns before emitting a 2.15-eV photon and transitioning to the ground state. What is the uncertainty in the frequency of the photon in Hz?arrow_forwardA harmonic oscillator consists of a 0.020 kg mass on a spring. The oscillation frequency is 1.50 Hz, and the mass has a speed of 0.480 m/s as it passes the equilibrium position. (a) What is the value of the quantum number n for its energy level? (b) What is the difference in energy between the levels En and En+1? Is this difference detectable?arrow_forward
- A nitrogen molecule (N2) vibrates with energy identical to a single particle of mass m = 1.162 x 10-26 kg attached to a spring with a force constant of k = 1500 N/m. Suppose the energy levels of the system are uniformly spaced as shown in the figure below. The lowest energy level is often called the “ground state” and is assigned an integer value n = 1. The next higher energy level is often called the “first excited state” and is assigned an integer value n =2. (1) What is the vibration frequency of this molecule? (2) How much energy is required to excite the molecule from the ground state (n = 1) to the first excited state (n = 2)? (3) How much energy is required to excite the molecule from the first excited state (n = 2) to the state n = 5?arrow_forwardRecall from Section 14.3 that the average kinetic energy of an atom in a monatomic ideal gas is given by KE=(3/2)kT, where k = 1.38 x 10-23 J/K and T is the Kelvin temperature of the gas. Determine the de Broglie wavelength of a helium atom (mass = 6.65 x 10-27 kg) that has the average kinetic energy at room temperature (292 K). Number i 7.38E-11 Units marrow_forward(2nx sin \1.50. 2nz Consider the case of a 3-dimensional particle-in-a-box. Given: 4 = sin(ny) sin 2.00. What is the energy of the system? O 6h?/8m O 4h²/8m O 3h2/8m O none are correctarrow_forward
- A hypothetical molecule oscillates with a natural frequency of 1.4 × 1013 Hz. Part (a) What is the energy difference, in electron volts, between adjacent harmonic oscillator states of the hypothetical molecule? Part (b) What is the quantum number of the state of the hypothetical molecule that has an energy of 0.75 eV? Round your answer to the nearest integer.arrow_forwardThe energy levels of the Bohr model for the atom can be expressed mathematically as En -13.6 eV, where Z is the atomic number, and n is the quantum number. This model is reasonably accurate for hydrogen and for singly ionized helium. The photon associated with the transition of an electron from the ground state to the first excited state in singly ionized helium has a different wavelength than that associated with a similar transition in hydrogen. Which of the following correctly describes the wavelengths of these two photons in terms of the energy level diagrams for hydrogen and helium? The photon absorbed by hydrogen has a longer wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. B The photon absorbed by hydrogen has a shorter wavelength than that absorbed by helium, because the energy levels in the diagram for hydrogen are more closely spaced than in the diagram for helium. The photon…arrow_forwardA potential well has 4 energy levels as given here: Energy of the state (eV) 13 12 9 4 Suppose that there are three electrons in the well, and that the system is in the first excited state. If the system emits a photon, what energy could the photon have? O (a) 3 eV Ⓒ (b) 5 eV O (c) 4 eV O (d) 8 eV (e) 9 eV x X 0%arrow_forward
- Hydrogen atoms in the atmosphere of the sun can exist in different energy states. The difference between the lowest energy state (the ground state) and the second to lowest energy state (the first excited state) is about 2.5 eV. The temperature of the sun’s atmosphere is about 5800 K (so kBT = 0.5 eV). What will be the ratio of the number of atoms in the first excited state divided by the number of atoms in the ground state?arrow_forwardA laser emits 5.50 x 1018 photons per second, using a transition from an excited state with energy 1.15 eV to a ground state with energy 0 eV. (a) What is the laser’s power output? (b) What is the wavelength?arrow_forwardatoms can occupy only certain discrete energy levels. Consider a gas at a temperature of 2 500 K whose atoms can occupy only two energy levels separated by 1.50 eV, where 1 eV (electron volt) is an energy unit equal to 1.60 × 10-19 J. Determine the ratio of the number of atoms in the higher energy level to the number in the lower energy level.arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning