UNIVERSITY PHYSICS,VOL.3 (OER)
17th Edition
ISBN: 2810020283905
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 89CP
An electron in a long, organic molecule used in a dye laser behaves approximately like a quantum particle in a box with width 4.18 nm. Find the emitted photon when the electron makes a transition from the first excited state to the ground state and from the second excited state to the first excited state.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first.
(a) What (in V) is the peak emf?
7.17
V
(b) At what time (in s) is the peak emf first reached?
0.196
S
(c) At what time (in s) is the emf first at its most negative?
0.589
x s
(d) What is the period (in s) of the AC voltage output?
0.785
S
A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?
For what type of force is it not possible to define a potential energy expression?
Chapter 7 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Ch. 7 - Check Your Understanding If a=3+4i , what is the...Ch. 7 - Check Your Understanding Suppose that a particle...Ch. 7 - Check Your Understanding For the particle in the...Ch. 7 - Check Your Understanding A sodium atom nukes a...Ch. 7 - Check Your Understanding A particle With mass m is...Ch. 7 - Check Your Understanding Which of the following...Ch. 7 - Check your Understanding (a) Consider an infinite...Ch. 7 - Check Your Understanding The vibrational frequency...Ch. 7 - Check Your Understanding Find the expectation...Ch. 7 - Check Your Understanding A proton with kinetic...
Ch. 7 - What is the physical unit of a wave function,...Ch. 7 - Can the magnitude of a wave function (*(x,t)(x,t))...Ch. 7 - What kind of physical quamtity does a wave...Ch. 7 - What is the physical meaning of a wave function of...Ch. 7 - What is the meaning of the expression "expectation...Ch. 7 - If the formalism of quantum mechanics is 'more...Ch. 7 - Can the de Broglie wavelength of a particle be...Ch. 7 - Can we measure the energy of a free localized...Ch. 7 - Can we measure both the position and momentum of a...Ch. 7 - What is the difference between a wave function...Ch. 7 - If a quantum particle is in a stationary state,...Ch. 7 - Explain the difference between time-dependent and...Ch. 7 - Suppose a wave function is discontinuous at some...Ch. 7 - Using the quantum particle in a box model,...Ch. 7 - Is it possible that when we measure the energy of...Ch. 7 - For a quantum panicle in a box, the first excited...Ch. 7 - Is it possible to measure energy of 0.75h for a...Ch. 7 - Explain the connection between Planck's hypothesis...Ch. 7 - If a classical harmonic oscillator can at rest,...Ch. 7 - Use an example of a quantum particle in a box or a...Ch. 7 - Can we simultaneously measure position and energy...Ch. 7 - When an electron and a proton of the same kinetic...Ch. 7 - What decreases the tunneling probability most:...Ch. 7 - Explain the difference between a box-potential and...Ch. 7 - Can a quantum particle 'escape' from an infinite...Ch. 7 - A tunnel diode and a resonant-tunneling diode both...Ch. 7 - Compute |(x,t)|2 for the function (x,t)=(x)sint,...Ch. 7 - Given the complex-valued function...Ch. 7 - Which one of the following functions, and why,...Ch. 7 - A particle with mass m moving along the x-axis and...Ch. 7 - A wave function of a particle with mass m is given...Ch. 7 - A velocity measurement of an a-particle has been...Ch. 7 - A gas of helium atoms at 273 K is in a cubical...Ch. 7 - If the uncertainty in the y -component of a...Ch. 7 - Some unstable elementary particle has a rest...Ch. 7 - An atom in a metastable state has a lifetime of...Ch. 7 - Measurements indicate that an atom remains in an...Ch. 7 - Suppose an electron is confined to a region of...Ch. 7 - Combine Equation 7.17 and Equation 7.18 to show...Ch. 7 - Show that (x,t)=Aei(kwt) is a valid solution to...Ch. 7 - Show that (x,t)=Asin(kxt) and (x,t)=Acos(kxt) do...Ch. 7 - Show that when 1(x,t) and 2(x,t) are solutions to...Ch. 7 - A particle with mass m is described by the...Ch. 7 - Find the expectation value of the kinetic energy...Ch. 7 - Find the expectation value of the square of the...Ch. 7 - A free proton has a wave function given by...Ch. 7 - Assume that an electron in an atom can be treated...Ch. 7 - Assume that a proton in a nucleus can be treated...Ch. 7 - An electron confined to a box has the ground state...Ch. 7 - What is the ground state energy (in eV) of a...Ch. 7 - What is the ground state energy (in eV) of an a...Ch. 7 - To excite an election in a one-dimensional box...Ch. 7 - An electron confined to a box of width 0.15 nm by...Ch. 7 - If the energy of the first excited state of the...Ch. 7 - Suppose an electron confined to a emits photons....Ch. 7 - Hydrogen H2 molecules are kept at 300.0 K in a...Ch. 7 - An electron is confined to a box of width 0.25 nm....Ch. 7 - An electron in a box is in the ground state with...Ch. 7 - Show that the two lowest energy states of the...Ch. 7 - If the ground state energy of a simple harmonic...Ch. 7 - When a quantum harmonic oscillator makes a...Ch. 7 - Vibrations of the hydrogen molecule H2 can be...Ch. 7 - A particle with mass 0.030 kg oscillates back-and-...Ch. 7 - Find the expectation value x2 of the square of the...Ch. 7 - Determine the expectation value of the potential...Ch. 7 - Verify that given by Equation 7.57 is a solution...Ch. 7 - Estimate the ground state energy of the quantum...Ch. 7 - A mass of 0.250 kg oscillates on a spring with the...Ch. 7 - Show that the wave function in (a) Equation 7.68...Ch. 7 - A 6.0-eV electron impacts on a barrier with height...Ch. 7 - A 5.0-eV electron impacts on a barrier of with...Ch. 7 - A 12.0-eV electron encounters a barrier of height...Ch. 7 - A quantum particle with initial kinetic energy...Ch. 7 - A simple model of a radioactive nuclear decay...Ch. 7 - A muon, a quantum particle with a mass...Ch. 7 - A grain of sand with mass 1.0 mg and kinetic...Ch. 7 - Show that if the uncertainty in the position of a...Ch. 7 - The mass of a -meson is measured to be 770MeV/c2...Ch. 7 - A particle of mass m is confined to a box of width...Ch. 7 - A particle in a box [0; L] is in the third excited...Ch. 7 - A 0.20-kg billiard ball bounces back and forth...Ch. 7 - Find the expectation value of the position squared...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Atoms in a crystal lattice vibrate in simple...Ch. 7 - A diatomic molecule behaves like a quantum...Ch. 7 - An electron with kinetic energy 2.0 MeV encounters...Ch. 7 - A beam of mono-energetic protons with energy 2.0...Ch. 7 - An electron in a long, organic molecule used in a...Ch. 7 - In STM, an elevation of the tip above the surface...Ch. 7 - If STM is to detect surface features with local...Ch. 7 - Use Heisenberg's uncertainty principle to estimate...Ch. 7 - Suppose an infinite square well extends from L/2...Ch. 7 - A particle of mass m confined to a box of width L...
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
25. The 100 kg block in FIGURE EX7.25 takes 6.0 s to reach the floor after being released from rest. What is th...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What is the molarity of an aqueous solution that is 5.88% NaCl by mass? (Assume a density of 1.02 g/mL for the ...
Introductory Chemistry (6th Edition)
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
Explain why 92% of 2,4-pemtanedione exists as the enol tautomer in hexane but only 15% of this compound exists ...
Organic Chemistry (8th Edition)
Knowledge Booster
Similar questions
- 10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forwardConsider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward
- 3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forward
- Pure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward5. Heat capacity often has a temperature dependence for real molecules, particularly if you go over a large temperature range. The heat capacity for liquid n-butane can be fit to the equation Cp(T) = a + bT where a = 100 J K₁₁ mol¹ and b = 0.1067 J K² mol¹ from its freezing point (T = 140 K) to its boiling point (T₁ = 270 K). A. Compute AH for heating butane from 170 K to 270 K. B. Compute AS for the same temperature range.arrow_forward4. How much energy must be transferred as heat to cause the quasi-static isothermal expansion of one mole of an ideal gas at 300 K from PA = 1 bar to PB = 0.5 bar? A. What is VA? B. What is VB? C. What is AU for the process? D. What is AH for the process? E. What is AS for the process?arrow_forward
- 1. The diagram shows the tube used in the Thomson experiment. a. State the KE of the electrons. b. Draw the path of the electron beam in the gravitational field of the earth. C. If the electric field directed upwards, deduce the direction of the magnetic field so it would be possible to balance the forces. electron gun 1KVarrow_forwardas a hiker in glacier national park, you need to keep the bears from getting at your food supply. You find a campground that is near an outcropping of ice. Part of the outcropping forms a feta=51.5* slopeup that leads to a verticle cliff. You decide that this is an idea place to hang your food supply out of bear reach. You put all of your food into a burlap sack, tie a rope to the sack, and then tie a bag full of rocks to the other end of the rope to act as an anchor. You currently have 18.5 kg of food left for the rest of your trip, so you put 18.5 kg of rocks in the anchor bag to balance it out. what happens when you lower the food bag over the edge and let go of the anchor bag? Determine the acceleration magnitude a of the two-bag system when you let go of the anchor bag?arrow_forward2. A thin Nichrome wire is used in an experiment to test Ohm's law using a power supply ranging from 0 to 12 V in steps of 2 V. Why isn't the graph of I vs V linear? 1. Nichrome wire does obey Ohm's law. Explain how that can that be true given the results abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill