UNIVERSITY PHYSICS,VOL.3 (OER)
17th Edition
ISBN: 2810020283905
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 69P
Show that the wave function in (a) Equation 7.68 satisfies Equation 7.61, and (b) Equation 7.69 satisfies Equation 7.63.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The wavefunction for a particle in a box in a three -dimensional potential energy well isΨ (x,yz) = A sin (nxπx/a) (nyπy/b) (nzπz/c)Determine the eigenvalue for the energy.
Particle is described by the wave function
Y = 0,x 0
a) Calculate A.
b) Take L as 10 nm and calculate the probability of finding the
particle in the region 1 nm
Consider a particle of mass m, located in a potential energy well.one-dimensional (box) with infinite height walls. The wave function that describes this system is:Ψn(x) = K sin (nπx /L), for 0 ≤ x ≤ LΨn(x) = 0 for any other value.K is a constant and n = 1,2,3,... Determine K*K = │K│2
Chapter 7 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Ch. 7 - Check Your Understanding If a=3+4i , what is the...Ch. 7 - Check Your Understanding Suppose that a particle...Ch. 7 - Check Your Understanding For the particle in the...Ch. 7 - Check Your Understanding A sodium atom nukes a...Ch. 7 - Check Your Understanding A particle With mass m is...Ch. 7 - Check Your Understanding Which of the following...Ch. 7 - Check your Understanding (a) Consider an infinite...Ch. 7 - Check Your Understanding The vibrational frequency...Ch. 7 - Check Your Understanding Find the expectation...Ch. 7 - Check Your Understanding A proton with kinetic...
Ch. 7 - What is the physical unit of a wave function,...Ch. 7 - Can the magnitude of a wave function (*(x,t)(x,t))...Ch. 7 - What kind of physical quamtity does a wave...Ch. 7 - What is the physical meaning of a wave function of...Ch. 7 - What is the meaning of the expression "expectation...Ch. 7 - If the formalism of quantum mechanics is 'more...Ch. 7 - Can the de Broglie wavelength of a particle be...Ch. 7 - Can we measure the energy of a free localized...Ch. 7 - Can we measure both the position and momentum of a...Ch. 7 - What is the difference between a wave function...Ch. 7 - If a quantum particle is in a stationary state,...Ch. 7 - Explain the difference between time-dependent and...Ch. 7 - Suppose a wave function is discontinuous at some...Ch. 7 - Using the quantum particle in a box model,...Ch. 7 - Is it possible that when we measure the energy of...Ch. 7 - For a quantum panicle in a box, the first excited...Ch. 7 - Is it possible to measure energy of 0.75h for a...Ch. 7 - Explain the connection between Planck's hypothesis...Ch. 7 - If a classical harmonic oscillator can at rest,...Ch. 7 - Use an example of a quantum particle in a box or a...Ch. 7 - Can we simultaneously measure position and energy...Ch. 7 - When an electron and a proton of the same kinetic...Ch. 7 - What decreases the tunneling probability most:...Ch. 7 - Explain the difference between a box-potential and...Ch. 7 - Can a quantum particle 'escape' from an infinite...Ch. 7 - A tunnel diode and a resonant-tunneling diode both...Ch. 7 - Compute |(x,t)|2 for the function (x,t)=(x)sint,...Ch. 7 - Given the complex-valued function...Ch. 7 - Which one of the following functions, and why,...Ch. 7 - A particle with mass m moving along the x-axis and...Ch. 7 - A wave function of a particle with mass m is given...Ch. 7 - A velocity measurement of an a-particle has been...Ch. 7 - A gas of helium atoms at 273 K is in a cubical...Ch. 7 - If the uncertainty in the y -component of a...Ch. 7 - Some unstable elementary particle has a rest...Ch. 7 - An atom in a metastable state has a lifetime of...Ch. 7 - Measurements indicate that an atom remains in an...Ch. 7 - Suppose an electron is confined to a region of...Ch. 7 - Combine Equation 7.17 and Equation 7.18 to show...Ch. 7 - Show that (x,t)=Aei(kwt) is a valid solution to...Ch. 7 - Show that (x,t)=Asin(kxt) and (x,t)=Acos(kxt) do...Ch. 7 - Show that when 1(x,t) and 2(x,t) are solutions to...Ch. 7 - A particle with mass m is described by the...Ch. 7 - Find the expectation value of the kinetic energy...Ch. 7 - Find the expectation value of the square of the...Ch. 7 - A free proton has a wave function given by...Ch. 7 - Assume that an electron in an atom can be treated...Ch. 7 - Assume that a proton in a nucleus can be treated...Ch. 7 - An electron confined to a box has the ground state...Ch. 7 - What is the ground state energy (in eV) of a...Ch. 7 - What is the ground state energy (in eV) of an a...Ch. 7 - To excite an election in a one-dimensional box...Ch. 7 - An electron confined to a box of width 0.15 nm by...Ch. 7 - If the energy of the first excited state of the...Ch. 7 - Suppose an electron confined to a emits photons....Ch. 7 - Hydrogen H2 molecules are kept at 300.0 K in a...Ch. 7 - An electron is confined to a box of width 0.25 nm....Ch. 7 - An electron in a box is in the ground state with...Ch. 7 - Show that the two lowest energy states of the...Ch. 7 - If the ground state energy of a simple harmonic...Ch. 7 - When a quantum harmonic oscillator makes a...Ch. 7 - Vibrations of the hydrogen molecule H2 can be...Ch. 7 - A particle with mass 0.030 kg oscillates back-and-...Ch. 7 - Find the expectation value x2 of the square of the...Ch. 7 - Determine the expectation value of the potential...Ch. 7 - Verify that given by Equation 7.57 is a solution...Ch. 7 - Estimate the ground state energy of the quantum...Ch. 7 - A mass of 0.250 kg oscillates on a spring with the...Ch. 7 - Show that the wave function in (a) Equation 7.68...Ch. 7 - A 6.0-eV electron impacts on a barrier with height...Ch. 7 - A 5.0-eV electron impacts on a barrier of with...Ch. 7 - A 12.0-eV electron encounters a barrier of height...Ch. 7 - A quantum particle with initial kinetic energy...Ch. 7 - A simple model of a radioactive nuclear decay...Ch. 7 - A muon, a quantum particle with a mass...Ch. 7 - A grain of sand with mass 1.0 mg and kinetic...Ch. 7 - Show that if the uncertainty in the position of a...Ch. 7 - The mass of a -meson is measured to be 770MeV/c2...Ch. 7 - A particle of mass m is confined to a box of width...Ch. 7 - A particle in a box [0; L] is in the third excited...Ch. 7 - A 0.20-kg billiard ball bounces back and forth...Ch. 7 - Find the expectation value of the position squared...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Atoms in a crystal lattice vibrate in simple...Ch. 7 - A diatomic molecule behaves like a quantum...Ch. 7 - An electron with kinetic energy 2.0 MeV encounters...Ch. 7 - A beam of mono-energetic protons with energy 2.0...Ch. 7 - An electron in a long, organic molecule used in a...Ch. 7 - In STM, an elevation of the tip above the surface...Ch. 7 - If STM is to detect surface features with local...Ch. 7 - Use Heisenberg's uncertainty principle to estimate...Ch. 7 - Suppose an infinite square well extends from L/2...Ch. 7 - A particle of mass m confined to a box of width L...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Endospore formation is called (a) _____. It is initiated by (b) _____. Formation of a new cell from an endospor...
Microbiology: An Introduction
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Fill in the blanks: The nose is to the mouth. The ankle is to the knee. The ring finger is to the inde...
Human Anatomy & Physiology (2nd Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
WHAT IF? What would the human life cycle be like if we had alternation of generations? Assume that the multice...
Campbell Biology (11th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Knowledge Booster
Similar questions
- A particle with mass 6.65×1027 kg is confined to an infinite square well of width L. The energy of the third level is 2.00×1024 J. Calculate the value of L.arrow_forwarda two-dimensional, infinite-potential well lying in an xy plane that contains an electron. We probe for the electron along a line that bisects Lx and find three points at which the detection probability is maximum. Those points are separated by 2.00 nm. Then we probe along a line that bisects Ly and find five points at which the detection probability is maximum.Those points are separated by 3.00 nm.What is the energy of the electron?arrow_forwardAn electron with energy E= +4.80 eV is put in an infinite potential well with U(x) =infinity for x<0 and x>L. Of course, U(x) = 0 for 0<x<L. Find the largest amount of time that the electron can exist outside the box. Draw and Label a figure.arrow_forward
- A particle with zero (total) energy is described by the wavefunction, Ψ(x) =A cos((n?x/L)): −L/4≤ x ≤ L/4 = 0 : elsewhere. Determine the normalization constant A. Calculate the potential energy of the particle. What is the probability that the particle will be found between x= 0 and x=L/8?arrow_forwardGiven: For sake of simplicity, let us consider a particle with mass, m, in one dimension trapped in an infinite square well potential. The bottom of the potential well has zero potential energy, and the particle is known to be confined between 0arrow_forwardA harmonic oscillator of mass m and angular frequency w is in the initial state of wavefunction Y(x, 0) = Ai¢o(x) + 2Ai¢2(x) 3. a. Obtain the constant A b. Write the function Þ(x, t) c. Calculate the uncertainties Ax and Ap in the state of wavefunction (x, t) and show that the Heisenberg uncertainty principle is satisfiedarrow_forwardA particle is confined to a one dimensional box with boundaries at x=0 and x-1. The wave function of the particle within the box boundaries is V(x) 2100 (- x + ) and zero V 619 everywhere else. What is the probability of finding the particle between x=0 and x=0.621? Do not enter your final answer as a percentage, but rather a number between 0 and 1. For instance, if you get that the probability is 20%, enter 0.2.arrow_forwardQuestion A6 Consider an infinite square well with V = 0 in the interval -L/2 < x < L/2, and V → ∞ everywhere else. A particle of mass m is in the groundstate of this system, and is known to have a wavefunction and energy given by TX √ = COS and E = π²h² 2mL² The system is then perturbed so that its potential takes the constant value Varrow_forwardA particle of mass m is trapped in a three-dimensional rectangular potential well with sides of length L, L/ √2, and 2L. Inside the box V = 0, outside V = ∞. Assume that Ψ = Asin (k1x) sin (k2y) sin (k3z) inside the well. Substitute this wave function into the Schrödinger equation and apply appropriate boundary conditions to find the allowed energy levels. Find the energy of the ground state and first four excited levels. Which of these levels are degenerate?arrow_forwardWhat is the solution of the time-dependent Schrödinger equation (x, t) for the total energy eigenfunction 4(x) = √2/a sin(3mx/a) for an electron in a one-dimensional box of length 1.00 x 10-10 m? Write explicitly in terms of the parameters of the problem. Give numerical values for the angular frequency and the wave- length of the particle.arrow_forwardA particle of mass m is confined to a harmonic oscillator potential V(x) = (1/2)kx². The particle starts off at t = 0 in the state yo + W1 where yn are the normalized energy eigenstates of the oscillator. (a) Sketch (axes, labels, no numbers needed) the wave function at t = 0. (b) Write an expression for y(x,t) for all t 2 0. . (c) Calculate the expectation value of the particle's position and momentum at all times t2 0. !arrow_forwardA particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax