Show that when
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
UNIVERSITY PHYSICS,VOL.3 (OER)
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Microbiology: An Introduction
Human Physiology: An Integrated Approach (8th Edition)
Fundamentals of Anatomy & Physiology (11th Edition)
Organic Chemistry (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
- What is the solution of the time-dependent Schrödinger equation (x, t) for the total energy eigenfunction 4(x) = √2/a sin(3mx/a) for an electron in a one-dimensional box of length 1.00 x 10-10 m? Write explicitly in terms of the parameters of the problem. Give numerical values for the angular frequency and the wave- length of the particle.arrow_forwardThe wavefunction for v =1 for a simple harmonic oscillator is Ψ = (2)1/2 ( α3/π)1/4 x exp (-αx2/2) Find the values of x such that ψ* ψ is a maximum.Hint: Differentiate dψ*ψ/dx and set the result equal to zero and solve for the value of x.arrow_forwardThe normalised wavefunction for an electron in an infinite 1D potential well of length 80 pm can be written:ψ=(0.587 ψ2)+(0.277 i ψ7)+(g ψ6). As the individual wavefunctions are orthonormal, use your knowledge to work out |g|, and hence find the expectation value for the energy of the particle, in eV.arrow_forward
- A particle of mass 1.60 x 10-28 kg is confined to a one-dimensional box of length 1.90 x 10-10 m. For n = 1, answer the following. (a) What is the wavelength (in m) of the wave function for the particle? m (b) What is its ground-state energy (in eV)? eV (c) What If? Suppose there is a second box. What would be the length L (in m) for this box if the energy for a particle in the n = 5 state of this box is the same as the ground-state energy found for the first box in part (b)? m (d) What would be the wavelength (in m) of the wave function for the particle in that case? marrow_forwardProblem 1: (a) A non-relativistic, free particle of mass m is bouncing back and forth between two perfectly reflecting walls separated by a distance L. Imagine that the two oppositely directed matter waves associated with this particle interfere to create a standing wave with a node at each of the walls. Find the kinetic energies of the ground state (first harmonic, n = 1) and first excited state (second harmonic, n = 2). Find the formula for the kinetic energy of the n-th harmonic. (b) If an electron and a proton have the same non-relativistic kinetic energy, which particle has the larger de Broglie wavelength? (c) Find the de Broglie wavelength of an electron that is accelerated from rest through a small potential difference V. (d) If a free electron has a de Broglie wavelength equal to the diameter of Bohr's model of the hydrogen atom (twice the Bohr radius), how does its kinetic energy compare to the ground-state energy of an electron bound to a Bohr model hydrogen atom?arrow_forwardA particle confined in a one-dimensional box of length L(0<=x<=L) is in a state described by the wavefunction Ψ(x)= Ψ1+ Ψ2(x). Where A and B are constants given by real numbers and A>=0.(With X=6 and Y=3)l)Determine what relationship A and B must satisfy for the wavefunction to be normalized.ll)Suppose that A=B .What is the probability of the particle being found in the interval 0<=x<=L/2?lll)What values of A and B that minimize the probability of finding the particle in the range of positions 0<=x<=L/2?arrow_forward
- The wavefunction of is Ψ(x) = Axe−αx2/2 for with energy E = 3αℏ2/2m. Find the bounding potential V(x). Looking at the potential’s form, can you write down the two energy levels that are immediately above ??arrow_forwarda) Write down the one-dimensional time-dependent Schro ̈dinger equation for a particle of mass m described by a wavefunction Ψ(t, x) in a potential V (x). b) For energy eigenstates, the wavefunction can be written as Ψ(t, x) = f (t) ψ(x). For this wavefunction:(i) state the time-independent equation that must be satisfied by ψ(x). (ii) derive an expression for f(t), in terms of the energy of the particle E.arrow_forwardShow that ? (x,t) = A exp [i (kx - ?t] is a solution to the time-dependent Schroedinger equation for a free particle. What relationship must k and ? have?arrow_forward
- A particle of mass m is trapped in a three-dimensional rectangular potential well with sides of length L, L/ √2, and 2L. Inside the box V = 0, outside V = ∞. Assume that Ψ = Asin (k1x) sin (k2y) sin (k3z) inside the well. Substitute this wave function into the Schrödinger equation and apply appropriate boundary conditions to find the allowed energy levels. Find the energy of the ground state and first four excited levels. Which of these levels are degenerate?arrow_forwardCalculate the probability that an electron will be found (a) between x = 0.1 and 0.2 nm, (b) between 4.9 and 5.2 nm in a box of length L = 10 nm when its wavefunction is Ψ = (2/L)1/2 sin(2πx/L). Treat the wavefunction as a constant in the small region of interest and interpret δV as δx.arrow_forwardThe general solution of the Schrodinger equation for a particle confined in an infinite square-well potential (where V = 0) of width L is w(x)= C sin kx + Dcos kx V2mE k where C and D are constants, E is the energy of the particle and m is the mass of the particle. Show that the energy E of the particle inside the square-well potential is quantised.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning