(a)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(a)

Answer to Problem 7.94QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
For a given value of
For a given value of
If
Here,
(b)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(b)

Answer to Problem 7.94QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Each of
(c)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(c)

Answer to Problem 7.94QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Each of 3d orbitals occupies two electrons. Hence, 10 electrons are resulted. Therefore, the maximum number of electrons in an atom that can have the quantum number
(d)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(d)

Answer to Problem 7.94QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Here,
(e)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(e)

Answer to Problem 7.94QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
4f-orbital occupies two electrons. Therefore, the maximum number of electrons in an atom that can have the quantum number
Want to see more full solutions like this?
Chapter 7 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





