(a)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (a) 3s
Get the values of the quantum numbers ‘n’, ‘l’ in (a)
(b)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (b) 4p
Get the values of the quantum numbers ‘n’, ‘l’ in (b)
(c)
Interpretation:
The values of the quantum numbers associated with the given orbitals should be identified using the concept of quantum numbers.
Concept Introduction:
Each electron in an atom is described by four different quantum numbers. The first three (n, l, ml) specify the particular orbital of interest, and the fourth (ms) specifies how many electrons can occupy that orbital.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
To find: Get the values of the quantum numbers (n, l, ml, ms) associated with the given orbital (c) 3d
Get the values of the quantum numbers ‘n’, ‘l’ in (c)
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 7 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- Don't used hand raiting and don't used Ai solutionarrow_forward(9 Pts) In one of the two Rare Earth element rows of the periodic table, identify an exception tothe general ionization energy (IE) trend. For the two elements involved, answer the followingquestions. Be sure to cite sources for all physical data that you use.a. (2 pts) Identify the two elements and write their electronic configurations.b. (2 pts) Based on their configurations, propose a reason for the IE trend exception.c. (5 pts) Calculate effective nuclear charges for the last electron in each element and theAllred-Rochow electronegativity values for the two elements. Can any of these valuesexplain the IE trend exception? Explain how (not) – include a description of how IErelates to electronegativity.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- please solve this, and help me know which boxes to check. Thank you so much in advance.arrow_forwardElectronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forward
- Describe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forwardUse a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)