
International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN: 9781305501607
Author: Andrew Pytel And Jaan Kiusalaas
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.92RP
The test specimen AB is placed in the grip of a tension-testing machine and secured with a wedge. The coefficient of static friction at both surfaces of the specimen is
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An aluminum rod of length L
=
1m has mass density p = 2700 kg and
Young's modulus E = 70 GPa. The rod is fixed at both ends. The exact
natural eigenfrequencies of the rod are wexact
E
=
√
ρ
for n=1,2,3,. . . .
1. What is the minimum number of linear elements necessary to
determine the fundamental frequency w₁ of the system? Discretize
the rod in that many elements of equal length, assemble the global
system of equations KU = w² MU, and find the fundamental
frequency w₁. Compute the relative error e₁ = (w1 - wexact) /w exact
Sketch the fundamental mode of vibration.
2. Use COMSOL to solve the same problem. Show the steps necessary
to find the fundamental frequency and mode of the rod. What is the
relative error using linear elements and a normal mesh?
A ball with a mass of 5.0 kg is hanging from a string and is initially at rest.
A bullet with a mass of 10.0 g and a velocity of 200.0 m/s is fired at the ball.
The bullet embeds itself inside the ball.
How high (h) do the ball and the bullet rise?
Gravitational acceleration: g=9.81g = 9.81g=9.81 m/s².
Don't use chatgpt.
Need handwritten solution.
Mechanical engineering
Chapter 7 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
Ch. 7 - Can the two blocks be in equilibrium in the...Ch. 7 - Determine the range of P for which the system of...Ch. 7 - Two identical chairs, each weighing 14 lb, are...Ch. 7 - The two homogeneous bars AB and BC are connected...Ch. 7 - The contact surface between the 36-lb block and...Ch. 7 - The uniform bar AB of weight W is leaning against...Ch. 7 - The center of gravity of the 50-kg spool is at G....Ch. 7 - The brake pads at C and D are pressed against the...Ch. 7 - The 200-lb homogenous cylinder of radius R is...Ch. 7 - The rear-wheel-drive pickup truck, with its center...
Ch. 7 - Solve Prob. 7.10 assuming that the pick-up truck...Ch. 7 - The 2-lb bar is pinned at A and rests on the 4-lb...Ch. 7 - The horizontal force P acts on the rim of the...Ch. 7 - The uniform bar and the homogeneous cylinder each...Ch. 7 - A stepladder consisting of two legs pinned...Ch. 7 - The mass of the unbalanced disk is m, and its...Ch. 7 - The two uniform sheets of plywood, each of length...Ch. 7 - Find the largest value of b/h at which the folding...Ch. 7 - The 3600-lb car with rear Wheel drive is...Ch. 7 - The 3600-lb car with rear wheel drive is...Ch. 7 - The man is trying to push the homogeneous 20-kg...Ch. 7 - A 1.1-kg disk A is placed on the inclined surface....Ch. 7 - The 40-lb spool is suspended from the hanger GA...Ch. 7 - A uniform plank is supported by a fixed support at...Ch. 7 - The uniform bar of weight W is supported by a...Ch. 7 - The uniform plank is initially at rest on the...Ch. 7 - The two homogeneous bars with the weights shown...Ch. 7 - The man pushes the 120-lb homogeneous crate with...Ch. 7 - The 80-kg crate has its center of gravity at G....Ch. 7 - Solve Prob. 7.29 if =0.Ch. 7 - The 120-lb door with its center of gravity at G is...Ch. 7 - Determine the largest force P for which the 16-kg...Ch. 7 - Determine the largest angle for which the...Ch. 7 - The cylinder and the block are connected by a...Ch. 7 - The weight of the cylindrical tank is negligible...Ch. 7 - The coeffient of static friction between the...Ch. 7 - The two homogenous boxes are stacked vertically....Ch. 7 - Two concrete blocks weighing 320 lb each form part...Ch. 7 - Derive the expression for the largest angle ? for...Ch. 7 - The 60-lb plank rests on a frictionless roller at...Ch. 7 - The 2000-lb weight of the trailer is distributed...Ch. 7 - Determine the smallest force P, applied to the...Ch. 7 - The homogenous cylinder of weight W is at rest...Ch. 7 - The uniform bar of length L and weight W is kept...Ch. 7 - The movable bracket of negligible weight is...Ch. 7 - The 200-lb man walks up the inclined plank of...Ch. 7 - Determine the smallest coefficient of static...Ch. 7 - Find the smallest distance d for which the hook...Ch. 7 - Prob. 7.49PCh. 7 - The block of weight W is pulled by the force P...Ch. 7 - The two 200-lb blocks are pushed apart by the 15...Ch. 7 - Determine the smallest horizontal force P that...Ch. 7 - The device shown is used to measure the kinetic...Ch. 7 - The single-threaded screw of the floor jack has a...Ch. 7 - A wedge is used to prop up the 6000-lb block of...Ch. 7 - The square-threaded screw 0f the C-clamp has a...Ch. 7 - The square-threaded screw with a pitch of 10 mm...Ch. 7 - The screw of the carjack has a pitch of 0.1 in....Ch. 7 - How many turns of rope around the capstan are...Ch. 7 - The force P applied to the brake handle enables...Ch. 7 - Prob. 7.61PCh. 7 - The 120-kg block A is suspended from a rope that...Ch. 7 - The leather rein used to fasten the horse to the...Ch. 7 - The 30-lb weight is attached to a rope that runs...Ch. 7 - The rail AB of negligible weight is suspended from...Ch. 7 - The blocks A and B of weights WA and WB are joined...Ch. 7 - The 150-lb weight is attached to a rope that...Ch. 7 - The 50-lb homogeneous bar AB is suspended from a...Ch. 7 - The collar bearing carries the axial load P = 400...Ch. 7 - Solve Sample Problem 7.16 if the contact pressure...Ch. 7 - The 600-lb cable spool is placed on a frictionless...Ch. 7 - Prob. 7.72PCh. 7 - The normal pressure acting on the disk of the...Ch. 7 - Prob. 7.74PCh. 7 - The single-plate clutch transmits the torque C...Ch. 7 - The clutch described in Prob. 7.75 is to transmit...Ch. 7 - The cone clutch transmits the torque C through a...Ch. 7 - The figure shows a steel bar being processed by a...Ch. 7 - The coefficient of rolling resistance between the...Ch. 7 - Prob. 7.80PCh. 7 - Calculate the horizontal force P required to push...Ch. 7 - The uniform pole BC of length L and weight W is...Ch. 7 - The homogeneous bar AB of weight W and length L is...Ch. 7 - Find the smallest angle for which the uniform...Ch. 7 - Prob. 7.85RPCh. 7 - Determine the largest angle for which the uniform...Ch. 7 - Can the uniform bar of weight W remain at rest in...Ch. 7 - The panel of weight W with its center of gravity...Ch. 7 - The woman is trying to move the crate of weight W...Ch. 7 - The screw of the clamp has a square thread of...Ch. 7 - Find the largest clockwise couple C that can be...Ch. 7 - The test specimen AB is placed in the grip of a...Ch. 7 - The coefficient of static friction between the...Ch. 7 - The uniform bars AB and BC are connected with a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Mechanical engineering question.arrow_forwardA shaft is loaded in bending and torsion such that Ma = 70 N·m, T₁ = 45 N · m, M = 55 N. m, and T = 35 N m. For the shaft, S₁ = 700 MPa and S = 560 MPa, and a fully corrected endurance limit of S₂ = 210 MPa is assumed. Let K = 2.2 and K = 1.8. With a Se design factor of 2.0 determine the minimum acceptable diameter of the shaft using the a) DE- Goodman b) DE-Morrow c) DE-Gerber d) DE-SWTarrow_forwardThe feed flow rate to an adiabatic continuous stirred tank reactor (CSTR) in which an exothermicreaction is occurring is increased from 1000 to 1400. kg/h, causing the outlet temperature to change as shown:a) Briefly explain on a physical basis why the temperature in this system oscillates after a step increasein the inlet flow rate. Be clear, complete, and concise. c) You know that this oscillating response cannot be that of two first order processes with real timeconstant acting in series. Assuming the reaction is first order and the CSTR operates with constant holdup,derive the block diagram with all transfer functions indicating how the temperature would respond to the feedflow rate step change (W’(s) as input and T’(s) as output). An intermediate variable in this block diagram willbe the concentration of A in the reactor, represented by CA’(s). d) A correct result for part c) will include a feedback loop in the block diagram, indicating the responsein T to a change in w is not…arrow_forward
- Spur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearingarrow_forwardProblem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forwardAn aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forward
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L

International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License