A uniform plank is supported by a fixed support at A and a drum at B that rotates clockwise. The coefficients of static and kinetic friction for the two points of contact are as shown. Determine whether the plank moves from the position shown if (a) the plank is placed in position before the drum is set in motion; and (b) the plank is first placed on the support at A and then lowered onto the drum, which is already rotating.
(a)
Whether the plank moves from the position if the plank is placed in position before the drum is set in motion
Answer to Problem 7.24P
The co-efficient of friction
Explanation of Solution
Given information:
A is fixed support.
Drum rotates at clockwise.
If there is no relative motion between two surfaces that are in contact, the relationship between normal force
Steps to follow in the equilibrium analysis of a body are:
1. Draw the free body diagram.
2. Write the equilibrium equations.
3. Solve the equations for the unknowns.
Calculation:
FBD of plank
Assume
Assume
For the equilibrium of plank, the bending moment about point A is equal to zero.
Write equilibrium equation in horizontal direction.
Write equilibrium equation in vertical direction.
The plank to remain at rest, it must resist the maximum static friction force
Assume
Therefore
The co-efficient of static friction
Therefore, the plank will slide at point A.
Conclusion:
The co-efficient of friction
(b)
Whether the plank moves from the position if the plank is first placed on support A and then lowered onto the drum
Answer to Problem 7.24P
The co-efficient of friction
Explanation of Solution
Given information:
A is fixed support.
Drum rotates at clockwise.
If there is no relative motion between two surfaces that are in contact, the relationship between normal force
Steps to follow in the equilibrium analysis of a body are:
1. Draw the free body diagram.
2. Write the equilibrium equations.
3. Solve the equations for the unknowns.
Calculation:
According to sub part a
The plank to remain at rest, it must slip on the drum at point B.
Therefore
The co-efficient of static friction
Therefore, the plank will not move.
Conclusion:
The co-efficient of friction
Want to see more full solutions like this?
Chapter 7 Solutions
International Edition---engineering Mechanics: Statics, 4th Edition
- Calculate for the vertical cross section moment of inertia for both Orientations 1 and 2 of a 1 x 1.5 in. horizontal hollow rectangular beam with wall thickness of t = 0.0625 in. Use the equation: I = ((bh^3)/12) - (((b-2t)(h-2t)^3)/12)arrow_forwardPlease answer 'yes' or 'no' and 'is' or 'is not' for the following:arrow_forwardConsider a large 23-cm-thick stainless steel plate (k = 15.1 W/m-K) in which heat is generated uniformly at a rate of 5 x 105 W/m³. Both sides of the plate are exposed to an environment at 30°C with a heat transfer coefficient of 60 W/m²K. The highest temperature will occur at surfaces of plate while the lowest temperature will occur at the midplane. Yes or No Yes Noarrow_forward
- My answers are incorrectarrow_forwardPicturearrow_forwardWhat is the weight of a 5-kg substance in N, kN, kg·m/s², kgf, Ibm-ft/s², and lbf? The weight of a 5-kg substance in N is 49.05 N. The weight of a 5-kg substance in kN is KN. The weight of a 5-kg substance in kg·m/s² is 49.05 kg-m/s². The weight of a 5-kg substance in kgf is 5.0 kgf. The weight of a 5-kg substance in Ibm-ft/s² is 11.02 lbm-ft/s². The weight of a 5-kg substance in lbf is 11.023 lbf.arrow_forward
- Mych CD 36280 kg. 0.36 givens Tesla truck frailer 2017 Model Vven 96154kph ronge 804,5km Cr Powertrain Across PHVAC rwheel 0.006 0.88 9M² 2 2kW 0.55M ng Zg Prated Trated Pair 20 0.95 1080 kW 1760 Nm 1,2 determine the battery energy required to meet the range when fully loaded determine the approximate time for the fully-loaded truck-trailor to accelerate from 0 to 60 mph while Ignoring vehicle load forcesarrow_forward12-217. The block B is sus- pended from a cable that is at- tached to the block at E, wraps around three pulleys, and is tied to the back of a truck. If the truck starts from rest when ID is zero, and moves forward with a constant acceleration of ap = 0.5 m/s², determine the speed of the block at D the instant x = 2 m. Neglect the size of the pulleys in the calcu- lation. When xƊ = 0, yc = 5 m, so that points C and D are at the Prob. 12-217 5 m yc =2M Xparrow_forwardsolve both and show matlab code auto controlsarrow_forward
- 12-82. The roller coaster car trav- els down the helical path at con- stant speed such that the paramet- ric equations that define its posi- tion are x = c sin kt, y = c cos kt, z = h - bt, where c, h, and b are constants. Determine the mag- nitudes of its velocity and accelera- tion. Prob. 12-82 Narrow_forwardGiven: = refueling Powertran SOURCE EMISSIONS vehide eff eff gasoline 266g co₂/kwh- HEV 0.90 0.285 FLgrid 411ilg Co₂/kWh 41111gCo₂/kWh EV 0.85 0.80 Production 11x10% og CO₂ 13.7 x 10°g CO₂ A) Calculate the breakeven pont (in km driven) for a EV against on HEV in Florida of 0.1kWh/kM Use a drive cycle conversion 5) How efficient would the powertrain of the HEV in this example have to be to break even with an EV in Florida after 150,000 Miles of service (240,000) km Is it plausible to achieve the answer from pert b Consideans the HaXINERY theoretical efficiency of the Carnot cycle is 5020 and there are additional losses of the transMISSION :- 90% efficiency ? c A what do you conclude is the leading factor in why EVs are less emissive than ICE,arrow_forwardsolve autocontrolsarrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L