
(a)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given
In
However, in the given reaction halogen atom is not attached to chiral carbon. It is bonded to non-chiral carbon atom. The attack of nucleophile has not affect on the stereochemistry of reactant as shown in Figure 1.
Figure 1
The stereochemistry of reactant and product is same.
The mechanism of given nucleophilic substitution reaction is
(b)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 2
The mechanism of given nucleophilic substitution reaction is
(c)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that carbon atom, on which bromine atom is present, is bonded to three other carbon atoms. Hence, the bromine atom is bonded to tertiary carbon atom. The removal of bromine atom leads to the formation of planer tertiary carbocation. The tertiary carbocation is most likely to undergo nucleophilic substitution reaction by
In
Figure 3
The mechanism of given nucleophilic substitution reaction is
(d)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which iodine atom is present, is bonded to two other carbon atoms. Hence, the iodine atom is bonded to secondary carbon atom. The removal of iodine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 4
The mechanism of given nucleophilic substitution reaction is
(e)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 5
The mechanism of given nucleophilic substitution reaction is
(f)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 6
The mechanism of given nucleophilic substitution reaction is
Want to see more full solutions like this?
Chapter 7 Solutions
Organic Chemistry
- Identify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forwardState the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forward
- State the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forwardProvide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardGiven a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forward
- An orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forwardThe molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forwardIn GC, what order will the following molecules elute from the column? CH3OCH3, CH3CH2OH, C3H8, C4H10arrow_forward
- Beer’s Law is A = εbc, where A is absorbance, ε is the molar absorptivity (which is specific to the compound and wavelength in the measurement), and c is concentration. The absorbance of a 2.31 × 10-5 M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm.arrow_forwardHow to calculate % of unknown solution using line of best fit y=0.1227x + 0.0292 (y=2.244)arrow_forwardGiven a 1,3-dicarbonyl compound, state the (condensed) formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





