Concept explainers
Which substance in each of the following pairs would you expect to have the higher boiling point: (a) Ne or Xe, (b) CO2 or CS2, (c) CH4 or Cl2. (d) F2 or LiF, (e) NH3 or PH3? Explain why.
(a)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
Therefore, only dispersion forces are presented in these molecules; dispersion forces is depends upon the molecular weight.
Boiling point is depending upon the strength of inter molecular forces.
Hence,
(b)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
In
There are two C-S presented in
The result of all the bond polarities are the sum of all the vectors associated with each bonds.
The directions of C-S bond vectors are opposite to each other, so they cancel each other.
Hence,
The vector sum or the result of bond polarities for
Therefore,
Only dispersion forces are present in
In
There are two C-O presented in
The result of all the bond polarities are the sum of all the vectors associated with each bonds.
The directions of C-O bond vectors are opposite to each other, so they cancel each other.
Hence,
The vector sum or the result of bond polarities for
Therefore,
Only dispersion forces are present in
Dispersion forces is depends upon the molecular weight.
Boiling point depends upon the strength of inter molecular forces.
Hence,
(c)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
The Cl-Cl bond in the
Therefore,
Only dispersion forces are present in
In
There are four C-H presented in
The result of all the bond polarities are the sum of all the vectors associated with each bonds.
The directions of C-H bond vectors are opposite to each other, so they cancel each other.
Hence,
The vector sum or the result of bond polarities for
Since the
Dispersion forces is depends upon the molecular weight.
Boiling point is depending upon the strength of inter molecular forces.
Hence,
(d)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
The F-F bond in the
Therefore,
Only dispersion forces are present in
Therefore,
Ionic forces are present in
Since ionic forces stronger than dispersion forces, then
Boiling point depends upon the strength of inter molecular forces.
Hence,
(e)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
In ammonia (
Three N-H bonds are presented and due to the difference in electronegativities of nitrogen and hydrogen, it has bond polarity. So
Polar molecules exhibit dipole-dipole interactions.
Since the hydrogen atom is bonded to nitrogen, then hydrogen bonding will be presented in between
In
Three P-H bonds are presented and due to the difference in electronegativities of phosphorus and hydrogen, it has bond polarity. So
Polar molecules exhibit dipole-dipole interactions.
Boiling point depends upon the strength of inter molecular forces.
Hence,
The molecules of higher boiling point in the given pairs of molecules are determined according to the polarities or molecular weights of molecules.
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: Atoms First
- A می 5. (a) Describe the location of the bonding electrons in solids that have (A) ionic, (B) covalent, and (C) metallic bonding. (b) Using the periodic table, calculate the percent ionic character of the interatomic bonds for the material CsCl. (c) Explain why hydrogen fluoride (HF) has a higher boiling temperature than hydrogen chloride (HCl) (19.4 vs. −85 °C), even though HF has a lower molecular weight.arrow_forward8.6 At 25°C, B = -42 cm³/mol for CH, and B = -732 cm³/mol for n-C,H10. For a mixture of 0.0300 mol of CH, and 0.0700 mol of n-C,H10 at 25°C in a 1.000-L vessel, calculate the pressure using the virial equation and (a) the approximation B12 = (B, + B,); (b) the fact that for this mixture, B = -180 cm³/mol. Compare the results with the ideal-gas-equation %3D %3D 12 result.arrow_forward8.40 For each of the following pairs, state which species has the greater van der Waals a, which has the greater van der Waals b, which has the greater T, and which has the greater AvapHm at the normal boiling point. (a) He or Ne; (b) C̟H6 or СН;; (с) Н,О or H,S. C' 9,arrow_forward
- The following plot shows the potential energy of two Cl atomsas a function of the distance between them. (a) If the two atomsare very far away from each other, what is their potential energyof interaction? (b) We know that the Cl2 molecule exists. Whatis the approximate bond length and bond strength for the Cl–Cl bond in Cl2 from this graph? (c) If the Cl2 molecule is compressedunder higher and higher pressure, does the Cl–Cl bondbecome stronger or weaker?arrow_forward4. LaCoO3 is a very unusual magnetic material that exhibits different types of magnetism in different temperature ranges. It has been shown to be (a) paramagnetic, (b) ferromagnetic, and (c) diamagnetic depending on the temperature. Sketch the M vs. H behavior that would be expected for each below. Be sure to label your axes. (a) (b) (c)arrow_forwardCH,OH The name carbohydrate comes from the fact that many simple sugars have chemical formulae that look like water has simply been added to carbon. (The suffix hydrate from the Greek word hydor ("water") means "compound formed by the addition of water.") OH The actual chemical structure of carbohydrates doesn't look anything like water molecules bonded to carbon atoms (see sketch at right). But it is nevertheless possible to chemically extract all the hydrogen and oxygen from many simple carbohydrates as water, leaving only carbon behind. If you search the Internet for "reaction of sulfuric acid and sugar" you will find some impressive videos of this. НО OH ОН The actual chemical Suppose you had (200. g) of ordinary table sugar, which chemists call sucrose, and which has the chemical formula C,,H,,0,. 22 structure of glucose. 12 Calculate the maximum mass of water you could theoretically extract. Be sure your answer has a unit symbol, and round it to 3 significant digits. x10 ?arrow_forward
- 2(a) Provide the Lewis structures for both CH3OH and C2H3Cl. 2(b) What is the largest bond angle among all the bond angles in CH3OH and C2H3Cl? Listthe three atoms making this largest bond angle, and estimate the value of the angle.2(c) What intermolecular forces are present(i) between CH3OH molecules?(ii) between C2H3Cl molecules?arrow_forwardAt standard temperature and pressure, the molar volumesof Cl2 and NH3 gases are 22.06 and 22.40 L, respectively.(a) Given the different molecular weights, dipole moments,and molecular shapes, why are their molar volumes nearlythe same? (b) On cooling to 160 K, both substances formcrystalline solids. Do you expect the molar volumes todecrease or increase on cooling the gases to 160 K? (c) Thedensities of crystalline Cl2 and NH3 at 160 K are 2.02 and0.84 g>cm3, respectively. Calculate their molar volumes.(d) Are the molar volumes in the solid state as similar asthey are in the gaseous state? Explain. (e) Would you expectthe molar volumes in the liquid state to be closer to thosein the solid or gaseous state?arrow_forward17. Which one of the following substances can be melted without breaking chemical bonds? (a) sodium sulfate (b) zinc chloride (c) sulfur dioxide (d) silicon dioxide (e) diamondarrow_forward
- The later halogens form pentafluorides: ClF5, BrF5, andIF5. At 0°C, one of these is a solid, one a liquid, and one agas. Specify which is which, and explain your reasoning.arrow_forwardExamining the crystal structure of CsCl (Caesium Chloride), the Cs+ions form the 8 corners of a cube and the Cl−ion is a the center of the cube. From first-principles calculation, it was determined that the lattice constant of CsCl is 4.209 ̊A. (a) Calculate in detail the electrostatic force exerted by all the Cs+ atoms to the Cl−atom; (b) Assuming that 1 Cs+atom is missing in crystal structure (crystal is said to have a defect), calculate in detail what will be the net electrostatic force on the Cl−ion due to the remaining Cs+ions.arrow_forwardA student investigates the physical and chemical properties of various carbon-containing compounds. Thr complete Lewis electron-dot diagrams and boiling points for two compounds, Q and Z, are shown in the following table: B) Any C — H bond in compound Q is shorter than the S — H bond in compound Z. Explain the reason for this difference using principles of atomic structure.arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,