(a)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(a)
Answer to Problem 7.52QP
Molecular Geometry | Hybridization of the central atom | |
(a) | Tetrahedral |
|
Explanation of Solution
Tetrahedral
A molecule having tetrahedral geometry has the empirical formula
Figure 1
The bond angle between two atoms in a tetrahedral molecule is
Figure 2
Thus a molecule having tetrahedral geometry has central atom with
(b)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(b)
Answer to Problem 7.52QP
Molecular Geometry | Hybridization of the central atom | |
(b) | Trigonal planar |
|
Explanation of Solution
Trigonal planar
A molecule having trigonal planar geometry has the empirical formula
Figure 3
The bond angle between two atoms in a trigonal planar molecule is
Figure 4
Thus a molecule having trigonal planar geometry has central atom with
(c)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(c)
Answer to Problem 7.52QP
S.No | Molecular Geometry | Hybridization of the central atom |
(c) | Trigonal bipyramidal |
|
Explanation of Solution
Trigonal bipyramidal
A molecule having trigonal bipyramidal geometry has the empirical formula
Figure 5
Trigonal bipyramidal molecule has two set of bonds – two axial bonds and three equatorial bonds. The two axial bonds are
Figure 6
If the d-orbital of the
(d)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(d)
Answer to Problem 7.52QP
S.No | Molecular Geometry | Hybridization of the central atom |
(d) | Linear |
|
Explanation of Solution
Linear
A molecule having linear geometry has the empirical formula
Figure 7
The bond angle between two atoms in linear molecule is
Figure 8
Thus a molecule having linear geometry has central atom with
(e)
Interpretation:
The hybridization of the central atom of the molecules with the following molecular geometries has to be predicted.
- (a) Tetrahedral (b) trigonal planar (c) trigonal bipyramidal (d) linear (e) octahedral
Concept Introduction:
Hybridization is a hypothetical concept. It refers to overlapping of atomic orbitals and the resultant orbitals formed are known as hybrid orbitals. An orbital that doesn’t involve in hybridization is termed as unhybridized orbital. After hybridization, the orbitals cannot be distinguished individually. The orientation of the orbitals while overlapping impacts the nature of the bond forms. By knowing the hybridization of central atom in the molecule its geometry can be predicted and vice-versa.
(e)
Answer to Problem 7.52QP
S.No | Molecular Geometry | Hybridization of the central atom |
(e) | Octahedral |
|
Explanation of Solution
Octahedral
A molecule having octahedral geometry has the empirical formula
Figure 9
The bond angle between two atoms in octahedral molecule is
Figure 10
If the d-orbital of the
The hybridization of the central atom of the molecules with the given molecular geometries has been predicted.
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: Atoms First
- AN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forward
- Q3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forward
- Please correct answer and don't used hand raitingarrow_forward9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forwardPlease Don't used hand raitingarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co