Concept explainers
Which of the following pairs of atomic orbitals of adjacent nuclei can overlap to form a sigma bond? Which overlap to form a pi bond? Which cannot overlap (no bond)? Consider the x axis to be the internuclear axis, that is, the line joining the nuclei of the two atoms, (a) 1s and 1s, (b) 1s and 2px. (c) 2px and 2py, (d) 3py and 3py, (e) 2px and 2px. (f) 1s and 2s.
Interpretation:
From the given set of orbitals, the ones that forms sigma bond, the ones that forms pi bond and the ones that doesn’t form any bond have to be identified.
Concept Introduction:
There are two different types of chemical bond – sigma bond and pi bond. A bond between two atoms is known as sigma bond if the atomic orbitals of the atoms overlap end to end – it is also called head on overlapping. A bond is said to pi bond if it is formed by sideways overlapping of atomic orbitals of the atoms. This is also known as lateral overlapping.
Answer to Problem 7.61QP
Solution:
S.No |
Set of atomic orbitals | Type of bond formation |
(a) |
| Sigma bond |
Explanation of Solution
Two
End to end overlapping of two
Figure 1
For example, the sigma bond between two Hydrogen atoms formed by end to end overlapping of
Interpretation:
From the given set of orbitals, the ones that forms sigma bond, the ones that forms pi bond and the ones that doesn’t form any bond have to be identified.
Concept Introduction:
There are two different types of chemical bond – sigma bond and pi bond. A bond between two atoms is known as sigma bond if the atomic orbitals of the atoms overlap end to end – it is also called head on overlapping. A bond is said to pi bond if it is formed by sideways overlapping of atomic orbitals of the atoms. This is also known as lateral overlapping.
Answer to Problem 7.61QP
Solution:
S.No |
Set of atomic orbitals | Type of bond formation |
(b) |
| Sigma bond |
Explanation of Solution
End to end overlapping of
Figure 2
Interpretation:
From the given set of orbitals, the ones that forms sigma bond, the ones that forms pi bond and the ones that doesn’t form any bond have to be identified.
Concept Introduction:
There are two different types of chemical bond – sigma bond and pi bond. A bond between two atoms is known as sigma bond if the atomic orbitals of the atoms overlap end to end – it is also called head on overlapping. A bond is said to pi bond if it is formed by sideways overlapping of atomic orbitals of the atoms. This is also known as lateral overlapping.
Answer to Problem 7.61QP
Solution:
S.No |
Set of atomic orbitals | Type of bond formation |
(c) |
| No bond formation |
Explanation of Solution
Shape of
Figure 3
Interpretation:
From the given set of orbitals, the ones that forms sigma bond, the ones that forms pi bond and the ones that doesn’t form any bond have to be identified.
Concept Introduction:
There are two different types of chemical bond – sigma bond and pi bond. A bond between two atoms is known as sigma bond if the atomic orbitals of the atoms overlap end to end – it is also called head on overlapping. A bond is said to pi bond if it is formed by sideways overlapping of atomic orbitals of the atoms. This is also known as lateral overlapping.
Answer to Problem 7.61QP
Solution:
S.No |
Set of atomic orbitals | Type of bond formation |
(d) |
| Pi bond |
Explanation of Solution
The
Sideways overlapping of two
Figure 4
Interpretation:
From the given set of orbitals, the ones that forms sigma bond, the ones that forms pi bond and the ones that doesn’t form any bond have to be identified.
Concept Introduction:
There are two different types of chemical bond – sigma bond and pi bond. A bond between two atoms is known as sigma bond if the atomic orbitals of the atoms overlap end to end – it is also called head on overlapping. A bond is said to pi bond if it is formed by sideways overlapping of atomic orbitals of the atoms. This is also known as lateral overlapping.
Answer to Problem 7.61QP
Solution:
S.No |
Set of atomic orbitals | Type of bond formation |
(e) |
| Pi bond |
Explanation of Solution
The
Lateral overlapping of two
Figure 5
Interpretation:
From the given set of orbitals, the ones that forms sigma bond, the ones that forms pi bond and the ones that doesn’t form any bond have to be identified.
Concept Introduction:
There are two different types of chemical bond – sigma bond and pi bond. A bond between two atoms is known as sigma bond if the atomic orbitals of the atoms overlap end to end – it is also called head on overlapping. A bond is said to pi bond if it is formed by sideways overlapping of atomic orbitals of the atoms. This is also known as lateral overlapping.
Answer to Problem 7.61QP
Solution:
S.No |
Set of atomic orbitals | Type of bond formation |
(f) |
| Sigma bond |
Explanation of Solution
Overlapping of two s-orbitals always result in sigma bond formation as two s-orbitals overlap head to head as follows –
End to end overlapping of
Figure 6
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: Atoms First
- Q4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forwardQ3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forward
- Q1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- 9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forwardPlease Don't used hand raitingarrow_forward7. For the following structure: ← Draw structure as is - NO BI H H Fisher projections (a) Assign R/S configuration at all chiral centers (show all work). Label the chiral centers with an asterisk (*). (b) Draw an enantiomer and diastereomer of the above structure and assign R/S configuration at all chiral centers (again, show all work). (c) On the basis of the R/S system, justify your designation of the structures as being enantiomeric or diastereomeric to the original structure.arrow_forward
- Don't used Ai solutionarrow_forward1. For the following reactions, predict the major product. Show stereochemistry where appropriate. неу b) 7 HBr XV ROOR H₂504 c) N/ H20 H+2 d) ~ Pt c) f. MCPBA -> сна сла (solvent) (1)BH 3-THE (3) Надрон B177 H20 9)arrow_forwardFor the following reactions, predict the major product. Show stereochemistry where approarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning