Concept explainers
A 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P7.68a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P7.68b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P7.68c). The object is then forced toward the left by the spring (Fig. P7.68d) and continues to move in that direction beyond the spring’s unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P7.68e). Find (a) the distance of compression d, (b) the speed v at the unstretched position when the object is moving to the left (Fig. P7.68d), and (c) the distance D where the object comes to rest.
Figure P7.68
(a)
Distance of compression.
Answer to Problem 68P
The distance of compression is
Explanation of Solution
Write the energy conservation equation between second and third picture.
Here
Write the equation for change in kinetic energy,
Here
Write the equation for change in potential energy,
Here
The final kinetic energy zero as the final velocity zero. The initial elastic potential energy is also zero as the spring is not extended initially.
Write the equation for change in internal energy
Here
Substitute (II), (III) and (IV) in (I)
Conclusion:
Substitute
Then,
The distance of compression is
(b)
Speed at the un stretched position when the object is moving left.
Answer to Problem 68P
The speed is
Explanation of Solution
Write the energy conservation equation between picture two and four
Substitute (II) and (IV) in (VI)
Substitute
Rewrite (VIII) for
Conclusion:
Substitute
The speed is
(c)
The distance at which the object comes to rest.
Answer to Problem 68P
The distance is
Explanation of Solution
Consider the motion from picture two to five
Substitute
Rearrange (X) in terms of
Conclusion:
Substitute
The distance is
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- A 1.00-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Fig. P8.62a). The object has a speed of vi = 3.00 m/s when it makes contact with a light spring (Fig. P8.62b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Fig. P8.62c). The object is then forced toward the left by the spring (Fig. P8.62d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Fig. P8.62e). Find (a) the distance of compression d, (b) the speed vat the unstretched posi-tion when the object is moving to the left (Fig. P8.624), and (c) the distance D where the abject comes to rest. Figure P8.62arrow_forwardA horizontal spring attached to a wall has a force constant of k = 850 N/m. A block of mass m = 1.00 kg is attached to the spring and rests on a frictionless, horizontal surface as in Figure P7.55. (a) The block is pulled to a position xi = 6.00 cm from equilibrium and released. Find the elastic potential energy stored in the spring when the block is 6.00 cm from equilibrium and when the block passes through equilibrium. (b) Find the speed of the block as it passes through the equilibrium point. (c) What is the speed of the block when it is at a position xi/2 = 3.00 cm? (d) Why isnt the answer to part (c) half the answer to part (b)? Figure P7.55arrow_forwardA 6 000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in Figure P6.27 (page 188). Both springs are described by Hookes law and have spring constants k1 = 1 600 N/m and k2, = 3 400 N/m. After the first spring compresses a distance of 30.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in the graph. The car comes to rest 50.0 cm after first contacting the two-spring system. Find the cars initial speed.arrow_forward
- A 4.00-kg particle moves along the x axis. Its position O varies with time according to x = t + 2.0t3, where x is in meters and t is in seconds. Find (a) the kinetic energy of the particle at any time t (b) the acceleration of the particle and the force acting on it at time t, (c) the power being delivered to the particle at time t and (d) the work done on the particle in the interval t = 0 to t = 2.00 s.arrow_forwardA block of mass m = 2.00 kg is attached to a spring of force constant k = 500 N/m as shown in Figure P7.15. The block is pulled to a position xi = 5.00 cm to the right of equilibrium and released from rest. Find the speed the block has as it passes through equilibrium if (a) the horizontal surface is frictionless and (b) the coefficient of friction between block and surface is k = 0.350. Figure P7.15arrow_forwardThe motion of a box of mass m = 2.00 kg along the x axis can be described by the function x = 4.00 + 3.00t2+ 2.00t3, where x is in meters and t is in seconds. a. What is the kinetic energy of the box as a function of time? b. What are the acceleration of the box and the force acting on the box as a function of time? c. What is the power delivered to the box as a function of time? d. What is the work performed on the particle during the time interval t = 1.00 s to t = 3.00 s?arrow_forward
- A nonconstant force is exerted on a particle as it moves in the positive direction along the x axis. Figure P9.26 shows a graph of this force Fx versus the particles position x. Find the work done by this force on the particle as the particle moves as follows. a. From xi = 0 to xf = 10.0 m b. From xi = 10.0 to xf = 20.0 m c. From xi = 0 to xf = 20.0 m FIGURE P9.26 Problems 26 and 27.arrow_forwardA particle moves in one dimension under the action of a conservative force. The potential energy of the system is given by the graph in Figure P8.55. Suppose the particle is given a total energy E, which is shown as a horizontal line on the graph. a. Sketch bar charts of the kinetic and potential energies at points x = 0, x = x1, and x = x2. b. At which location is the particle moving the fastest? c. What can be said about the speed of the particle at x = x3? FIGURE P8.55arrow_forwardAssume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 50 cm and holds it in position with a force of 150 N. If the mass of the arrow is 50 g and the “spring” is massless, what is the speed of the arrow immediately after it leaves the bow?arrow_forward
- Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The ball launcher in the machine sends metal balls up one side of the machine and then into play. The spring in the launcher (Fig. P6.60) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined = 10.0 with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.arrow_forwardA particle moves in the xy plane (Fig. P9.30) from the origin to a point having coordinates x = 7.00 m and y = 4.00 m under the influence of a force given by F=3y2+x. a. What is the work done on the particle by the force F if it moves along path 1 (shown in red)? b. What is the work done on the particle by the force F if it moves along path 2 (shown in blue)? c. What is the work done on the particle by the force F if it moves along path 3 (shown in green)? d. Is the force F conservative or nonconservative? Explain. FIGURE P9.30 In each case, the work is found using the integral of Fdr along the path (Equation 9.21). W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz) (a) The work done along path 1, we first need to integrate along dr=dxi from (0,0) to (7,0) and then along dr=dyj from (7,0) to (7,4): W1=x=0;y=0x=7;y=0(3y2i+xj)(dxi)+x=7;y=0x=7;y=4(3y2i+xj)(dyj) Performing the dot products, we get W1=x=0;y=0x=7;y=03y2dx+x=7;y=0x=7;y=4xdy Along the first part of this path, y = 0 therefore the first integral equals zero. For the second integral, x is constant and can be pulled out of the integral, and we can evaluate dy. W1=0+x=7;y=0x=7;y=4xdy=xy|x=7;y=0x=7;y=4=28J (b) The work done along path 2 is along dr=dyj from (0,0) to (0,4) and then along dr=dxi from (0,4) to (7,4): W2=x=0;y=0x=0;y=4(3y2i+xj)(dyj)+x=0;y=4x=7;y=4(3y2i+xj)(dyi) Performing the dot product, we get: W2=x=0;y=0x=0;y=4xdy+x=0;y=4x=7;y=43y2dx Along the first part of this path, x = 0. Therefore, the first integral equals zero. For the second integral, y is constant and can be pulled out of the integral, and we can evaluate dx. W2=0+3y2x|x=0;y=4x=7;y=4=336J (c) To find the work along the third path, we first write the expression for the work integral. W=rtrfFdr=rtrf(Fxdx+Fydy+Fzdz)W=rtrf(3y2dx+xdy)(1) At first glance, this appears quite simple, but we cant integrate xdy=xy like we might have above because the value of x changes as we vary y (i.e., x is a function of y.) [In parts (a) and (b), on a straight horizontal or vertical line, only x or y changes]. One approach is to parameterize both x and y as a function of another variable, say t, and write each integral in terms of only x or y. Constraining dr to be along the desired line, we can relate dx and dy: tan=dydxdy=tandxanddx=dytan(2) Now, use equation (2) in (1) to express each integral in terms of only one variable. W=x=0;y=0x=7;y=43y2dx+x=0;y=0x=7;y=4xdyW=y=0y=43y2dytan+x=0x=7xtandx We can determine the tangent of the angle, which is constant (the angle is the angle of the line with respect to the horizontal). tan=4.007.00=0.570 Insert the value of the tangent and solve the integrals. W=30.570y33|y=0y=4+0.570x22|x=0x=7W=112+14=126J (d) Since the work done is not path-independent, this is non-conservative force. Figure P9.30ANSarrow_forwardIf the net work done by external forces on a particle is zero, which of the following statements about the particle must be true? (a) Its velocity is zero. (b) Its velocity is decreased. (c) Its velocity is unchanged. (d) Its speed is unchanged. (e) More information is needed.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University