
(a)
To determine: The speed of the sky diver when he lands on the ground.
(a)

Answer to Problem 24P
Answer: The speed of the sky diver when he lands on the ground is
Explanation of Solution
Explanation:
Given information:
An
Formula to calculate the speed of the sky diver by conservation of energy is,
The initial kinetic energy of the sky diver is zero because sky diver is initially at rest and final potential energy of the sky diver is zero because the distance is zero.
Formula to calculate the potential energy of the sky diver before jump is,
Formula to calculate the total mechanical energy of the system is,
Formula to calculate the kinetic energy of the sky diver when he lands on ground is,
Substitute
The force
Substitute
Conclusion:
Therefore, the speed of the sky diver when he lands on the ground is
(b)
To explain: Whether the sky diver will be injured or not.
(b)

Answer to Problem 24P
Answer: Therefore, the sky diver will be injured because his speed is very high.
Explanation of Solution
Explanation:
Given information:
An
Yes, the sky diver will be injured because speed of the sky diver is covered the distance approx
Conclusion:
Therefore, the sky diver will be injured because his speed is very high.
(c)
To determine: The height at which parachute should be open if the final speed of the sky diver when he hits the ground is
(c)

Answer to Problem 24P
Answer: The height parachute should be open is
Explanation of Solution
Explanation:
Given information:
An
From equation (II),
Assume
Substitute
Conclusion:
Therefore, height parachute should be open is
(d)
To determine: The assumption that the total retarding force is constant.
(d)

Answer to Problem 24P
Answer: Therefore, as the density of air changes with the altitude therefore, the assumption that the retarding force is constant is not realistic.
Explanation of Solution
Explanation:
Given information:
An
The assumption that total retarding force is constant is not realistic because the air density changes with the change in altitude. Retarding force is proportional to the density of the air so, with the change in the density of air, the retarding force also changes with the altitude.
Conclusion:
Therefore, as the density of air changes with the altitude therefore, the assumption that the retarding force is constant is not realistic.
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





