Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 58P
To determine
Comparison of resistive force equation for a given model with its empirical formula.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
During a spacewalk, Dmitri
finds himself floating 3 m
from his space station's
airlock. He only has one
minute of air left. He has
one detachable 10 kg
toolkit, which he can toss
to propel himself toward
safety. How fast will he
need to move to reach the
airlock before he runs out
of air?
The puffer fish (tetradontiade) can employ a defense mechanism whereby it fills its stomach with water until the fish is almost spherical in shape. The shape, in conjunction with its external spines, are a significant deterrent to predators. Suppose that a puffer fish takes in water until its mass has increased by f = 1.89 times its initial mass. In this state, and initially at rest, the puffer fish expels the water with a speed s in one direction, while the fish recoils in the opposite direction at a speed v. For this problem neglect the drag-force effects of the surrounding ocean water. Write an expression for v/s in terms of f.
b. The drawing shows a sulfur dioxide molecule, SO2. It consists of two oxygen atoms and a sulfuratom. A sulfur atom is twice as massive as an oxygen atom. Using this information and the dataprovided in the drawing, find the center of mass of the sulfur dioxide molecule. Express youranswers in nanometers (1 nm = 10_9 m).
Chapter 7 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 7.1 - By what transfer mechanisms does energy enter and...Ch. 7.1 - Consider a block sliding over a horizontal surface...Ch. 7.2 - Prob. 7.3QQCh. 7.2 - Prob. 7.4QQCh. 7.4 - Prob. 7.5QQCh. 7 - You hold a slingshot at arms length, pull the...Ch. 7 - An athlete jumping vertically on a trampoline...Ch. 7 - Prob. 3OQCh. 7 - Two children stand on a platform at the top of a...Ch. 7 - Answer yes or no to each of the following...
Ch. 7 - A ball of clay falls freely to the hard floor. It...Ch. 7 - What average power is generated by a 70.0-kg...Ch. 7 - In a laboratory model of cars skidding to a stop,...Ch. 7 - At the bottom of an air track tilted at angle , a...Ch. 7 - One person drops a ball from the top of a building...Ch. 7 - Prob. 2CQCh. 7 - Does everything have energy? Give the reasoning...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - A block is connected to a spring that is suspended...Ch. 7 - Consider the energy transfers and transformations...Ch. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Review. A bead slides without friction around a...Ch. 7 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 7 - A block of mass 0.250 kg is placed on top of a...Ch. 7 - A block of mass m = 5.00 kg is released from point...Ch. 7 - Two objects are connected by a light string...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - A crate of mass 10.0 kg is pulled up a rough...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A block of mass m = 2.00 kg is attached to a...Ch. 7 - Prob. 16PCh. 7 - A smooth circular hoop with a radius of 0.500 m is...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - As shown in Figure P7.20, a green bead of mass 25...Ch. 7 - A 5.00-kg block is set into motion up an inclined...Ch. 7 - The coefficient of friction between the block of...Ch. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - A child of mass m starts from rest and slides...Ch. 7 - The electric motor of a model train accelerates...Ch. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Sewage at a certain pumping station is raised...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 7 - Prob. 42PCh. 7 - A certain automobile engine delivers 2.24 104 W...Ch. 7 - Prob. 44PCh. 7 - A small block of mass m = 200 g is released from...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Jonathan is riding a bicycle and encounters a hill...Ch. 7 - Prob. 54PCh. 7 - A horizontal spring attached to a wall has a force...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Make an order-of-magnitude estimate of your power...Ch. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Review. As a prank, someone has balanced a pumpkin...Ch. 7 - Review. The mass of a car is 1 500 kg. The shape...Ch. 7 - A 1.00-kg object slides to the right on a surface...Ch. 7 - A childs pogo stick (Fig. P7.69) stores energy in...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - A block of mass m1 = 20.0 kg is connected to a...Ch. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - A block of mass 0.500 kg is pushed against a...Ch. 7 - A pendulum, comprising a light string of length L...Ch. 7 - Jane, whose mass is 50.0 kg, needs to swing across...Ch. 7 - A roller-coaster car shown in Figure P7.82 is...Ch. 7 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A suspicious physics student watches a stunt performed at an ice show. In the stunt, a performer shoots an arrow into a bale of hay (Fig. P11.24). Another performer rides on the bale of hay like a cowboy. After the arrow enters the bale, the balearrow system slides roughly 5 m along the ice. Estimate the initial speed of the arrow. Is there a trick to this stunt? FIGURE P11.24arrow_forwardAs it plows a parking lot, a snowplow pushes an ever-growing pile of snow in front of it. Suppose a car moving through the air is similarly modeled as a cylinder of area A pushing a growing disk of air in front of it. The originally stationary air is set into motion at the constant speed v of the cylinder as shown in Figure P8.32. In a time interval t, a new disk of air of mass m must be moved a distance v t and hence must be given a kinetic energy 12(m)v2. Using this model, show that the cars power loss owing to air resistance is 12Av3 and that the resistive force acting on the car is 12Av2, where is the density of air. Compare this result with the empirical expression 12DAv2 for the resistive force. Figure P8.32arrow_forwardA cart filled with sand rolls at a speed of 1.0 m/s along a horizontal path without friction. A ball of mass m = 2.0 kg is thrown with a horizontal velocity of 8.0 m/s toward the cart as shown in Figure P11.79. The ball gets stuck in the sand. What is the velocity of the cart after the ball strikes it? The mass of the cart is 15 kg. FIGURE P11.79 Problems 79 and 80.arrow_forward
- In an attempt to produce exotic new particles, a proton of mass mp = 1.67 1027 kg is accelerated to 0.99c (c = 3.00 108 m/s is the speed of light) and crashed into a helium nucleus of mass mHe = 6.64 1027 kg initially at rest. The collision is elastic. a. What is the kinetic energy of the helium nucleus after the collision? b. What is the kinetic energy of the proton after the collision? (In Chapter 39, well learn what Einstein says about making such calculations.)arrow_forwardA model rocket is shot straight up and explodes at the top of its trajectory into three pieces as viewed from above and shown in Figure P10.44. The masses of the three pieces are mA = 100.0 g, mB = 20.0 g, and mC = 30.0 g. Immediately after the explosion, piece A is traveling at 1.50 m/s, and piece B is traveling at 7.00 m/s in a direction 30 below the negative x axis as shown. What is the velocity of piece C? FIGURE P10.44 Problems 44 and 45. 45. We can use the conservation of momentum (Eq. 10.9). The total initial momentum is zero, so the sum of all the final momenta should be zero. mAvAf+mBvBf+mCvCf=0 This velocities for A and B can be expressed as vectors. vAf=1.50jm/svBf=(7.00im/s)cos30(7.00jm/s)sin30=(6.06i3.50j)m/s We can now solve the momentum equation. (100.0g)(1.50jm/s)+(20.0g)(6.06i3.50j)m/s+(30.0g)vCf=0vCf=(4.04i2.67j)m/s The velocity of piece C is down and to the right as expected.arrow_forwardIn Figure P11.51, a cue ball is shot toward the eight-ball on a pool table. The cue ball is shot at the eight-ball with a speed of 8.00 m/s in a direction 30.0 from the y axis. Both balls have the same mass of 0.170 kg. After the balls undergo an elastic collision, the eight-ball travels in the negative x direction into the side pocket. What is the velocity of the cue ball after this collision? FIGURE P11.51arrow_forward
- As it plows a parking lot, a snowplow pushes an ever-growing pile of snow in front of it. Suppose a car moving through the air is similarly modeled as a cylinder of area A pushing a growing disk of air in front of it. The originally stationary air is set into motion at the constant speed υ of the cylinder as shown. In a time interval Δt, a new disk of air of mass Δm mustbe moved a distance υ Δt and hence must be given a kinetic energy (1)/(2(Δm)υ2. Using this model, show that the car’s power loss owing to air resistance is (1)/(2)ρAυ3 and that the resistive force acting on the car is (1)/(2)ρAυ2, where ρ is the density of air. Compare this result with the empirical expression (1)/(2)DρAυ2 for the resistive force.arrow_forwardA satellite is floating in space. Solar wind sweeping past the satellite consists of a stream of particles, mainly hydrogen ions of mass 1.7×10−27 kg. There are about 0.5×105 ions per cubic meter, and their speed is 8.0×105 m/s. An `umbrella' attached to the satellite is slowly opened, such that the radius of the circular cross-section of the umbrella is changing with time as r(t)=bt2, where b=0.1 m/s2 is a constant (see the figure which shows the side and front views). What is the maximum change of momentum of the satellite due to the solar wind hitting this umbrella after a time of 10 seconds? Explain carefully why this is the maximum possible change. You must explain your reasoning every step of the way!arrow_forwardA particle P of mass m = 0.56 kg is released from rest at a point h = 7 m above the surface of a liquid in a container. P falls through the air into the liquid. Assume there is no air resistance and there is no instantaneous change in speed of P as it enters the liquid. When P is at a distance of d = 0.71 m below the surface of the liquid, P's speed is v = 4.9 m/s. The only force acting on P due to the liquid is a constant resistance to motion of magnitude R N. Find the following: v1: The speed (in m/s) of P the moment just before it strikes the surface of the fluid.a1: The magnitude of the deceleration (in m/s2) of P while it is falling through the liquid.R: The magnitude of the resistance force (in N). The depth of the liquid in the container is dp = 3.9 m. P is taken from the container and attached to one end of a light inextensible string. P is placed at the bottom of the container and then pulled vertical upwards with a constant acceleration, a2. The resistance force to motion R N…arrow_forward
- You are watching a National Geographic Special on television. One segment of the program is about archerfish which inhabit streams in southeast Asia. This fish actually spits drops of water at insects to knock them into the water so it can eat them. The commentator states that the archerfish keeps its mouth at the surface of the pond and squirts a jet of water from its mouth at a speed of 4 m/s. You watch an archerfish shoot a juicy mosquito off a leaf and into the stream. You estimate that the leaf was about 3/4 of a meter above the stream. You wonder at what minimum angle from the horizontal must the fish shoot a water droplet in order to hit the mosquito. Since you have time during the commercial break, you quickly calculate this angle using conservation of energy.arrow_forwardPhysics homework assignment, I don't know how to do this question. There's multiple parts but it's all one question. Thanks for the help!arrow_forward1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning