
(a)
Final velocities of both mass after collision.
(a)

Answer to Problem 39P
Both objects after a head-on collision will stick together and move with the same velocity that is
Explanation of Solution
Given:
Object mass is 15 kg. It moves in +x direction at 5.5 m/s. it collides with a mass of 10 kg that is travelling in -x direction at 4 m/s.
After the collision, objects stick together that is they move with equal velocity as a single unit
Formula Used:
According to the conservation of momentum,
Calculation:
Substituting the values in the formula for the conservation of momentum,
Conclusion:
Thus, both objects after a head-on collision will stick together and move with the same velocity that is
(b)
Final velocities of both mass after collision.
(b)

Answer to Problem 39P
After the collision, object with mass
Explanation of Solution
Given:
Object mass is 15 kg. It moves in +x direction at 5.5 m/s. it collides with a mass of 10 kg that is travelling in -x direction at 4 m/s.
The collision is elastic which means,
Formula Used:
According to the conservation of momentum,
Calculation:
After inserting the values in the formula for the conservation of momentum,
Conclusion:
Thus, after the collision, object with mass
(c)
Final velocities of both mass after collision.
To identify: Whether the result obtained is reasonable.
(c)

Answer to Problem 39P
Both objects after a head-on collision, 15 kg object is at rest that is
Yes, it is reasonable.
Explanation of Solution
Given:
Object mass is 15 kg. It moves in +x direction at 5.5 m/s. it collides with a mass of 10 kg that is travelling in -x direction at 4 m/s.
After the collision, 15 kg object is at rest.
Formula Used:
According to the conservation of momentum,
According to the conservation of kinetic energy,
Calculation:
After inserting the values in the formula for the conservation of momentum, we get
Now, calculating change in kinetic energy,
Here, system has lost kinetic energy.
Now, after checking the direction of the system after collision,
Conclusion:
Both objects after a head-on collision, 15 kg object is at rest that is 0 m/s and 10 kg object will move in +x direction with
The result is reasonable.
(d)
Final velocities of both mass after collision.
To identify: Whether the result obtained is reasonable.
(d)

Answer to Problem 39P
Both objects after a head-on collision, 10 kg object is at rest that is
Explanation of Solution
Given:
Object mass is 15 kg. It moves in +x direction at 5.5 m/s. it collides with a mass of 10 kg that is travelling in -x direction at 4 m/s.
After the collision, 10 kg object is at rest that is
Formula Used:
According to the conservation of momentum,
Calculation:
After inserting the values in the formula for the conservation of momentum,
Now, after checking the direction of the system, after collision, 15 kg object will move in +x direction and 10 kg object will be stopped. But, 15 kg object cannot pass the other object moving in the +x direction. If 10 kg object stops, then 15 kg object must move in −x direction. Hence, this result is not reasonable.
Conclusion:
Both objects after a head-on collision, 10 kg object is at rest that is
(e)
Final velocities of both mass after collision.
To identify: Whether the result obtained is reasonable.
(e)

Answer to Problem 39P
Both objects after a head-on collision, 10 kg object is moving in +x direction with velocity
Explanation of Solution
Given:
Object mass is 15 kg. It moves in +x direction at 5.5 m/s. it collides with a mass of 10 kg that is travelling in -x direction at 4 m/s.
After the collision, 15 kg object is moving in negative direction with velocity
Formula Used:
According to the conservation of momentum,
Calculation:
After substituting the values in the formula for the conservation of momentum,
Now, after checking the direction of the system, directions of the system is accurate. But, considering the case of perfectly elastic collision, velocity of both objects is larger in this case. This suggests that both particles have gained kinetic energy which is not possible without any external source or greater initial velocities. Hence, result is not reasonable.
Conclusion:
Both objects after a head-on collision, 10 kg object is moving in +x direction with velocity
Chapter 7 Solutions
Physics: Principles with Applications
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Campbell Biology (11th Edition)
Organic Chemistry (8th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry (7th Edition)
Human Physiology: An Integrated Approach (8th Edition)
- 43. A mass må undergoes circular motion of radius R on a hori- zontal frictionless table, con- nected by a massless string through a hole in the table to a second mass m² (Fig. 5.33). If m₂ is stationary, find expres- sions for (a) the string tension and (b) the period of the circu- lar motion. m2 R m₁ FIGURE 5.33 Problem 43arrow_forwardCH 70. A block is projected up an incline at angle 0. It returns to its initial position with half its initial speed. Show that the coefficient of ki- netic friction is μk = tano.arrow_forwardPassage Problems A spiral is an ice-skating position in which the skater glides on one foot with the other foot held above hip level. It's a required element in women's singles figure-skating competition and is related to the arabesque performed in ballet. Figure 5.40 shows Canadian skater Kaetlyn Osmond executing a spiral during her medal-winning perfor- mance at the 2018 Winter Olympics in Gangneung, South Korea. 77. From the photo, you can conclude that the skater is a. executing a turn to her left. b. executing a turn to her right. c. moving in a straight line out of the page. 78. The net force on the skater a. points to her left. b. points to her right. c. is zero. 79. If the skater were to execute the same maneuver but at higher speed, the tilt evident in the photo would be a. less. b. greater. c. unchanged. FIGURE 5.40 Passage Problems 77-80 80. The tilt angle 0 that the skater's body makes with the vertical is given ap- proximately by 0 = tan¯¹(0.5). From this you can conclude…arrow_forward
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





