
Concept explainers
(a)
Interpretation: The given each reaction as an oxidation half-reaction (or) reduction half-reaction has to be explained.
Concept introduction:
The cell reaction can be represented as two half-reactions with the number of transferred electrons. They are as follows:
- • Oxidation half-reaction.
- • Reduction half-reaction.
Oxidation half-reaction: The oxidation half-reaction is the part of a redox reaction that shows only for the oxidized species with the transferred electrons and its oxidation state increases with the loss of electrons.
Reduction half-reaction: The reduction half-reaction is also the part of a redox reaction (the counter part of oxidation half-reaction) that shows only for the reduced species with the transferred electrons and its oxidation state decreases with the gain of electrons.
Oxidation: Losing electrons, increasing oxidation number.
Reduction: Gaining electron, decreasing oxidation number.
(b)
Interpretation: The given each reaction as an oxidation half-reaction (or) reduction half-reaction has to be explained.
Concept introduction:
The cell reaction can be represented as two half-reactions with the number of transferred electrons. They are as follows:
- • Oxidation half-reaction.
- • Reduction half-reaction.
Oxidation half-reaction: The oxidation half-reaction is the part of a redox reaction that shows only for the oxidized species with the transferred electrons and its oxidation state increases with the loss of electrons.
Reduction half-reaction: The reduction half-reaction is also the part of a redox reaction (the counter part of oxidation half-reaction) that shows only for the reduced species with the transferred electrons and its oxidation state decreases with the gain of electrons.
Oxidation: Losing electrons, increasing oxidation number.
Reduction: Gaining electron, decreasing oxidation number.
(c)
Interpretation:
The given each reaction as an oxidation half-reaction (or) reduction half-reaction has to be explained.
Concept introduction:
The cell reaction can be represented as two half-reactions with the number of transferred electrons. They are as follows:
- • Oxidation half-reaction.
- • Reduction half-reaction.
Oxidation half-reaction: The oxidation half-reaction is the part of a redox reaction that shows only for the oxidized species with the transferred electrons and its oxidation state increases with the loss of electrons.
Reduction half-reaction: The reduction half-reaction is also the part of a redox reaction (the counter part of oxidation half-reaction) that shows only for the reduced species with the transferred electrons and its oxidation state decreases with the gain of electrons.
Oxidation: Losing electrons, increasing oxidation number.
Reduction: Gaining electron, decreasing oxidation number.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Chemistry In Context
- Plleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AIarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
- Please sirrr soollveee these parts pleaseeee and thank youuuuu, don't solve it by AI plleeaasseeearrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forward
- Please sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward
- 2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





