Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 2P
Answer these questions for celestial bodies at each of the following temperatures and then draw a conclusion about the relationship between temperature and wavelength of maximum intensity. What is the wavelength of maximum intensity? In which part of the
- a. 50 K
- b. 500 K
- c. 5000 K
- d. 50,000 K
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Why don’t we see hydrogen Balmer lines in the spectra of stars with temperatures of 3,200 K?
a.
There is no hydrogen in stars this cool.
b.
The stars are hot enough that most of the hydrogen is ionized and the atoms cannot absorb energy.
c.
These stars are so cool that nearly all of the hydrogen atoms are in the ground state.
d.
Stars of this temperature are too cool to produce an absorption spectrum.
e.
Stars of this temperature are too hot to produce an absorption spectrum.
An astronomical unit
a.is the average distance from the Earth to the Sun.
b.is about 150 million kilometres.
c.is measured using radar signals bouncing off Venus.
d.has units of distance.
e.all of the mentioned choices.
Galileo made many discoveries. Which one of these is not attributed to him?
a.that the Moon has mountains, valleys and craters
b.that the Sun has imperfections known as sunspots
c.that four small points of light orbit the planet Jupiter
d.the invention of the telescope
e.that Venus shows a complete cycle of phases
Which one of these statements describes why the planet Venus is much warmer than Earth?
a.Venus has a denser and deeper atmosphere.
b.It is closer to the Sun than Earth.
c.It experienced a 'runaway greenhouse effect' long ago.
d.It produces more carbon dioxide than is absorbed by the surface.
e.all of the mentioned statements
H.M
1-What wavelength (in nanometers) is the peak intensity of the light coming from a star whose
surface temperature is 11,000 Kelvin? (Note: This is about twice the temperature of our Sun's
surface.)
2-Determine the surface temperature of a star whose maximum intensity is at 400nm.
Chapter 7 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 7 - Prob. 1RQCh. 7 - Prob. 2RQCh. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 6RQCh. 7 - Prob. 7RQCh. 7 - Prob. 8RQCh. 7 - Prob. 9RQCh. 7 - Prob. 10RQ
Ch. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Prob. 13RQCh. 7 - Prob. 14RQCh. 7 - Prob. 15RQCh. 7 - Prob. 16RQCh. 7 - How is heat different from temperature?Ch. 7 - Prob. 18RQCh. 7 - Prob. 19RQCh. 7 - Prob. 20RQCh. 7 - Prob. 21RQCh. 7 - Prob. 22RQCh. 7 - Could an object be orbiting another object and we...Ch. 7 - Prob. 24RQCh. 7 - How Do We Know? How is the macroscopic world you...Ch. 7 - Prob. 1PCh. 7 - Answer these questions for celestial bodies at...Ch. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 1SOPCh. 7 - Prob. 2SOPCh. 7 - Prob. 1LTLCh. 7 - Prob. 2LTLCh. 7 - Prob. 3LTLCh. 7 - Prob. 4LTLCh. 7 - Prob. 5LTLCh. 7 - Prob. 6LTLCh. 7 - Prob. 7LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Explain how we use spectral absorption and emission lines to determine the composition of a gas.arrow_forward2. Kittel, Ch4-5. Surface temperature of the Earth. Calculate the temperature of the surface of the Earth on the assumption that as a black body in thermal equilibrium it reradiates as much thermal radiation as it receives from the Sun. Assume also that the surface of the Earth is at a constant temperature over the day-night cycle. Use T = 5800K; R₂ = 7×10¹⁰ cm; and the Earth-Sun distance of 1.5x10¹3 cm.arrow_forwarda. Describe the concept of “sphere of influence” and how it is estimated. b. Calculate the SOI for the Moon relative to the Earth. c. Would a single lone star have a computed sphere of influence, as defined in this class, which could be calculated? If no, why not? If yes, how would you do it?arrow_forward
- In a nil converted to energy. How many joules (J) of energy are produced? 1. Read and Understand What information are you given? Mass= m = 0.15 kg Speed of light = c = 300,000,000 m/s=3x108 m/s 2. Plan and Solve What unknown are you trying to calculate? The amount of energy produced = E = ? What formula contains the given quantities and the unknown? E = mc² Replace each variable with its known variable and known value. E = (0.15 kg)(3.00 × 108 m/s)² E = 1.35 x 10¹6 kg.m²/s2 = 1.4 x 10¹6 J 3. Look Back and Check Is your answer reasonable? Yes, the calculated number is quite large compared to the mass, and the units indicate energy. Math Practice How many 3. A nuclear reactor produces 2.75 x 1016 joules of energy. kilograms of uranium-235 are completely converted to energy?arrow_forwardQUESTION 1 Estimate The Temperature For A Planet In Other Solar System (Questions 1-3) Let us assume scientists just discovered a planet orbiting a star in an extra-solar system. The star has a surface temperature Ts = 10000 Kelvins and a radius Sr = 1x109 meters. Scientists also measured the distance (D) between the star and the planet as D = 2 AU - 3.0x1011 meters. The solar power per unit area from the star's surface (Ps) can be calculated from the star's surface temperature Ts (10000 Kelvins) by the Stefen-Boltzman law Ps=0(Ts)4, where o is Stefen-Boltzman constant (5.67 x 10-8 Watt/meter2/Kelvin4). What is the solar power per unit area from the star's surface (Ps)? O Ps ~ 2.87 x 108 Watt/meter2 O Ps ~ 5.67 x 108 Watt/meter2 O O Ps ~ 2.87 x 10 Watt/meter2 Watt/meter² Ps ~ 5.67 x 10⁹ QUESTION 2 The solar power (Ps) decreases from the star's surface to the distance at the planet. Assuming the solar power per unit area at the distance of the planet as Pp, we have Pp=Ps(Sr/D)2, where…arrow_forward1Which of the following best describes a frame of reference? an experiment that proved that Earth did not have an aether wind the theory that describes the behavior and characteristics of objects moving at relativistic speeds the effect of the slowing of time as an object moves with high speeds a point in which someone relates the behavior of an object from one perspective 2If an electron moves from n = 5 to n = 1, what wavelength of light is emitted? (h = 6.626 x 10-34, 1 eV = 1.6 x 10-19 J) 4008 nm 434 nm 95 nm 1281 nm 3Which of the following best describes a frame of reference? an experiment that proved that Earth did not have an aether wind the theory that describes the behavior and characteristics of objects moving at relativistic speeds the effect of the slowing of time as an object moves with high speeds a point in which someone relates the behavior of an object from…arrow_forward
- Planets around stars other than the sun have recently been discovered by: * A. The variation in the Doppler shift in the star's spectrum. B. The astrometric motion of the stars on the sky. C. Direct imaging D. It is impossible to detect planets around other starsarrow_forwardOf the following observing devices, the one that is designed to make observations at visible wavelengths is a. Chandra. b. Sofia. c. the Hubble Space Telescope. d. the Spitzer Space Telescope e. the Compton Space telescope.arrow_forwardWhat is the acceleration of gravity (g) at the surface of the Sun? (See Appendix E for the Sun’s key characteristics.) How much greater is this than g at the surface of Earth? Calculate what you would weigh on the surface of the Sun. Your weight would be your Earth weight multiplied by the ratio of the acceleration of gravity on the Sun to the acceleration of gravity on Earth. (Okay, we know that the Sun does not have a solid surface to stand on and that you would be vaporized if you were at the Sun’s photosphere. Humor us for the sake of doing these calculations.)arrow_forward
- 2. Plasma oscillations in the ionosphere. The plasma density in the lower ionosphere has been measured during satellite reentry to be about a) 10¹8 m-³ at 50 km altitude, b) 10¹7 m-³ at 70 km and c) 10¹4 m²³ at 85 km. Use the formula for the electron plasma frequency to compute its numerical value for each of these three altitudes, AND state (we'll address this quantitatively later, when we get to EM wave propagation in plasmas) why the ionosphere is a relevant consideration for radio communications both on earth and between earth and interplanetary spacecraft.arrow_forwardHow to calculate.arrow_forward1. The Sun radiates energy like a black body with temperature 5800 K. Use the Stefan-Boltzmann Law to calculate the Sun's Luminosity (which is the Sun's Surface Area times the Flux radiated per unit surface area. Use the following parameters: Sun's Radius = R = 6.96 x 1010 cm Stefan-Boltzmann Const = s = 5.67 x 10-5 ergs/cm2 K4 sSun's Temperature = T = 5800 K Formula for Luminosity: L = 4pR2 sT 4 What is the Sun's Luminosity? __________ ergs/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY