Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 10P
To determine
The radial velocity of the star, whether it is approaching or receding, and whether it is a blue shift or red shift.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In a laboratory, the Balmer-beta spectral line of hydrogen has a wavelength of 486.1 nm . If the line appears in a star’s spectrum at 485.8 nm , what is the star’s radial velocity? Is it approaching or receding? Is this a blueshift or a redshift?
"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec.
a. What is its distance from us?
b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how do
In the parallax method of determining stellar distances, the angle to a star is measured while
the earth is on one side of the sun and then again six months later, as in the diagram below.
Assume the earth-sun distance is 1 Astronomical Unit. The parallax angle of Alpha Centauri
is 0= 2.1 x 10-4 ° . Find the distance from the sun to a Centauri in light years. Assume a
circular orbit for the Earth.
a Centauri
Earth (June)
Earth (December)
Sun
Chapter 7 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 7 - Prob. 1RQCh. 7 - Prob. 2RQCh. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 6RQCh. 7 - Prob. 7RQCh. 7 - Prob. 8RQCh. 7 - Prob. 9RQCh. 7 - Prob. 10RQ
Ch. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Prob. 13RQCh. 7 - Prob. 14RQCh. 7 - Prob. 15RQCh. 7 - Prob. 16RQCh. 7 - How is heat different from temperature?Ch. 7 - Prob. 18RQCh. 7 - Prob. 19RQCh. 7 - Prob. 20RQCh. 7 - Prob. 21RQCh. 7 - Prob. 22RQCh. 7 - Could an object be orbiting another object and we...Ch. 7 - Prob. 24RQCh. 7 - How Do We Know? How is the macroscopic world you...Ch. 7 - Prob. 1PCh. 7 - Answer these questions for celestial bodies at...Ch. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 1SOPCh. 7 - Prob. 2SOPCh. 7 - Prob. 1LTLCh. 7 - Prob. 2LTLCh. 7 - Prob. 3LTLCh. 7 - Prob. 4LTLCh. 7 - Prob. 5LTLCh. 7 - Prob. 6LTLCh. 7 - Prob. 7LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A star has a measured radial velocity of 300 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 657.18 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) nm Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-del ta (410.2 nm)arrow_forward15: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. What is the distance to this star? Answer: 37 16: What is the absolute magnitude of this star? Answer:1.8 17: Is this star more or less luminous than the Sun? Answer "M" for More luminous or "L" for Less luminous. (HINT: the absolute magnitude of the Sun is 4.8) Answer: M 18: What is the luminosity of this star? (HINT: The luminosity of the Sun is 3.85×1026 W.) Please answer question #18, #15-17 are correct, the photos provide the work for them.arrow_forwardA star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)arrow_forward
- Let us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forwardSuppose a star has a luminosity of 7.0x1026 watts and an apparent brightness of 4.0×10-12 watt/m?. How far away is it? Give your answer in both kilometers and light-years.arrow_forward
- Is the Sun an average star? Why or why not?arrow_forwardThe star Sirius A has an apparent magnitude of 1.5 . Sirius A has a dim companion, Sirius B, which is 10,000 times less bright than Sirius A. What is the apparent magnitude of Sirius B? Can Sirius B be seen with the naked eye?arrow_forwardThe Hα spectral line has a rest wavelength of 6562.8 ˚A (remember: 1 ˚A = 10−10 m). In star A, the lineis seen at 6568.4 ˚A, in star B it’s seen at 6560.3 ˚A, and in star C it’s seen at 6562.8 ˚A. Which star ismoving the fastest (along the line of sight) and what is the radial velocity of each star?arrow_forward
- You measure a star to have a parallax angle of 0.12 arc-seconds. What fraction of a degree is this? By how many times would you have to magnify this effect for it to be visible to the human eye? (The limit of human vision is about 1 arc-minute) What is the distance to this star in parsecs? What is the distance to this star in light years What is the parallax angle of a different star that is twice as far away as the star from the previous problems? [answer in arc-seconds without including the unit]arrow_forwardA star has a period of P = 37 days. It has a radius of 5.7 times the radius of the sun. Calculate it's equatorial speed Vrot. Answer: Okm/s Om/s Check A star has a radius of 5.7 times the radius of the sun and a mass of 18 times the mass of the sun. It rotates at 0.7 of the critical speed W, the speed at which it's surface at the equator is actually in orbit. Recall Vrot is calculated at the equator and W= Vrot/Vorb Calculate it's period P. Answer: Odays Ohours Oseconds Checkarrow_forwardWhich star in the table below has the least surface temperature? Star Name d (parsecs) Parallax (seconds of arc) Spectral Type $$ \delta $$ Cen 0.026 B2 IV HR 4607 0.039 G8 III HR 4758 20 G0 V HR 39801 0.005 M2 I 9 CMa 2.5 A1 V a. $$ \delta $$ Cen b. HR 4607 c. HR 4758 d. HD 39801 e. 9 CMaarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax