Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 12P
To determine
The change in wavelength of the Balmer-beta line.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
For a star with the same radius as the Sun, but with a mass twice that of the Sun;
a) What is the average pressure lower limit value?
b) What is the lower limit value for the average temperature according to the minimum and maximum limit values of the average molecular weight?
The brightest star in the sky is Sirius, the Dog Star. Itis actually a binary system of two stars, the smaller one (Sirius B)being a white dwarf. Spectral analysis of Sirius B indicates that itssurface temperature is 24 000 K and that it radiates energy at a totalrate of 1.0 · 1025 W. Assume that it behaves like an ideal blackbody.(a) What is the radius of Sirius B? Express your answer in kilometersand as a fraction of our Sun’s radius (R= 6.96 · 108 m). (b) Whichstar radiates more total energy per second, the hot Sirius B or the(relatively) cool Sun with a surface temperature of T = 5800 K? Tofind out, calculate the ratio of the total power radiated by our Sun tothe power radiated by Sirius B.
Please answer
Chapter 7 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 7 - Prob. 1RQCh. 7 - Prob. 2RQCh. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 6RQCh. 7 - Prob. 7RQCh. 7 - Prob. 8RQCh. 7 - Prob. 9RQCh. 7 - Prob. 10RQ
Ch. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Prob. 13RQCh. 7 - Prob. 14RQCh. 7 - Prob. 15RQCh. 7 - Prob. 16RQCh. 7 - How is heat different from temperature?Ch. 7 - Prob. 18RQCh. 7 - Prob. 19RQCh. 7 - Prob. 20RQCh. 7 - Prob. 21RQCh. 7 - Prob. 22RQCh. 7 - Could an object be orbiting another object and we...Ch. 7 - Prob. 24RQCh. 7 - How Do We Know? How is the macroscopic world you...Ch. 7 - Prob. 1PCh. 7 - Answer these questions for celestial bodies at...Ch. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 1SOPCh. 7 - Prob. 2SOPCh. 7 - Prob. 1LTLCh. 7 - Prob. 2LTLCh. 7 - Prob. 3LTLCh. 7 - Prob. 4LTLCh. 7 - Prob. 5LTLCh. 7 - Prob. 6LTLCh. 7 - Prob. 7LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- e. The radial function for the 3s orbital in the hydrogen atom is given below: (27 – 180 + 202)e (o = ) R3s = ao = 52.92 pm Calculate the distance(s) of the node(s) of the 3s orbital of the hydrogen atom from the nucleus.arrow_forwardThe Spitzer Space Telescope was launched in 2003 to detect infrared radiation. Suppose a particular detector on the telescope is sensitive over part of the near-infrared region of wavelengths 980 to 1920 nm. Astronomers want to detect the radiation being emitted from a red giant star and decide to concentrate on wavelengths from the Paschen series of the hydrogen atom. (a) What are the known wavelengths in this wavelength region? (b) The detector measures wavelengths of 1334.5, 1138.9, and 1046.1 nm believed to be from the Paschen series. Why are these wavelengths different from those found in part (a)? (c) How fast is the star moving with respect to us?arrow_forwardYou are studying a very distant quasar and are trying to determine how far away it is. The quasar is a very bright point-like light source, and there is only one relevant distance measuring technique applicable to objects at such a great distance. From a spectra of the quasar, you observe that it's Lyman alpha emission line (which would be at 121.6 nm in a laboratory sample of Hydrogen) is at 130 nm. What is the distance to this quasar in units of Mpc. [Hint: Think about what distance measuring technique we use for the very farthest objects in the universe. You will need to look up a special constant (who's value is uncertain) to complete this problem. The answer accounts for the possible range of uncertainty in the quantity you need to look up.]arrow_forward
- Determine the classical orbital elements (a, e, i, 2, w, f,) for (1) L, = (8800.00 ) km and v, = (0.943736 i-6.31469 k) km/s and %3D %3D (ii). r, = (3818.14 i+8148.07 j+504.90 k) km, r, = (3533.28 i +8280.22 j +525.91k) km r =(-3969.52 î + 8512.67 j + 821.75 k) km. Assume u= 3.986 x 10° km /s? (i.e., geocentric orbits)arrow_forwardA section of superconducting wire carries a current of 100 A and requires 1.00 L of liquid nitrogen per hour to keep it below its critical temperature. For it to be economically advantageous to use a superconducting wire, the cost of cooling the wire must be less than the cost of energy lost to heat in the wire. Assume that the cost of liquid nitrogen is $0.30 per liter, and that electric energy costs $0.10 per kW·h.What is the resistance of a normal wire that costs as much in wasted electric energy as the cost of liquid nitrogen for the superconductor?arrow_forwardCalculate the wavelength, in nanometers, of the photon emitted when the electron in a hydrogen atom transitions from the level n1 = 8 to level n2 = 2. Use three significant figures in your answer.arrow_forward
- Estimate the thermally Doppler-broadened line widths for the hydrogen Lya, C III, O VI, and Mg X lines are given below; use the temperatures provided. Take the masses of H, c, O, and Mg to be 1 u, 12 u, 16 u, and 24 u, respectively. The 121.6-nm Lyman-alpha (Lya) emission line of hydrogen (n=2 →n =1) is produced at the top of the chromosphere at 20,000 K, the ClII 97.7-nm line originates at a level where the temperature is 90,000 K, the 103.2-nm line of O VI occurs at 300,000 K, and Mg X creates a 62.5-nm line at 1.4 x 106 K.arrow_forwardYour research team analysis the light of a mysterious object in space. By using a spectrometer, you can observe the following spectrum of the object. The Ha line peak is clearly visible: 1.0 0.8 0.6 0.4 0.2 500 550 600 650 700 750 800 850 Wavelength (nm) (a) Mark the first four spectral lines of hydrogen (Ha, H3, H, Hồ) in the spectrum. (b) Determine the radial velocity and the direction of the object's movement. (c) Calculate the distance to the observed object. (d) What possible type of object is your team observing? Relative Flux [arb. unit]arrow_forwardAn Arrhenius complex absorbs photons of energy 10.54 keV. Calculate the wavelength of the corresponding electromagnetic radiation in nm. [Note: Planck constant = 6.626 x10^–34 J s, 1 eV = 1.602x10^–19 J, speed of light =3.000x108 m s^–1] (ii) What is the corresponding spectral range?(iii) What type of spectral transition is responsible for the photon absorption?arrow_forward
- Your research team analysis the light of a mysterious object in space. By using a spectrometer,you can observe the following spectrum of the object. The Hα line peak is clearly visible:(a) Mark the first four spectral lines of hydrogen (Hα, Hβ, Hγ, Hδ) in the spectrum.(b) Determine the radial velocity and the direction of the object’s movement.(c) Calculate the distance to the observed object.(d) What possible type of object is your team observing?arrow_forwardYour research team analysis the light of a mysterious object in space. By using a spectrometer,you can observe the following spectrum of the object. The Hα line peak is clearly visible:(a) Mark the first four spectral lines of hydrogen (Hα, Hβ, Hγ, Hδ) in the spectrum.(b) Determine the radial velocity and the direction of the object’s movement.(c) Calculate the distance to the observed object.(d) What possible type of object is your team observing?arrow_forwardThe elliptical galaxy NGC 4889 is the largest galaxy in the Coma Cluster (shown in the image below taken by the Hubble Space Telescope). After analysing the spectrum of NGC 4889, an astronomer identifies a spectral line as being CaII (singly ionised Calcium) with a measured wavelength of 401.8 nm. The true, rest wavelength of this spectral line, measured in a lab, is 393.3 nm. Using a Hubble constant of ?0 = 70 km/s/Mpc, find the distance to this galaxy cluster. Give your answer in megaparsecs and in light-years.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning