Foundations of Astronomy (MindTap Course List)
14th Edition
ISBN: 9781337399920
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7LTL
To determine
The spectrum of the star looks like in front of the nebula.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A star has a surface temperature of T = 10,000 K and a radius three times that of the Sun, R = 3R (recall that symbolizes the Sun). What is its luminosity, L, in units of solar luminosities, L? Give your answer to three significant figures.
answer, expressed in solar luminosities, tells how many times more luminous this star is than the Sun.
We will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, lets assume a white dwarf has a temperature roughly twice as large as a red giant star. As for their stellar radii, the white dwarf has a radius about 1/10000th that of a red giant star.
With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf? (Put differently, find the ratio of their luminosities a.k.a. how many times more luminous is the red giant than the white dwarf? An answer of less than 1 means the white dwarf is more luminous, an answer of 1 means they have the same luminosity, and an answer greater than 1 means the red giant is more lu
If two stars, star A and star B, have equal luminosities, but star A has half the surface temperature of star B, what can we conclude about the size (radius or diameter) of star B relative to star A (the ratio RB/RA)?
Chapter 7 Solutions
Foundations of Astronomy (MindTap Course List)
Ch. 7 - Prob. 1RQCh. 7 - Prob. 2RQCh. 7 - Prob. 3RQCh. 7 - Prob. 4RQCh. 7 - Prob. 5RQCh. 7 - Prob. 6RQCh. 7 - Prob. 7RQCh. 7 - Prob. 8RQCh. 7 - Prob. 9RQCh. 7 - Prob. 10RQ
Ch. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Prob. 13RQCh. 7 - Prob. 14RQCh. 7 - Prob. 15RQCh. 7 - Prob. 16RQCh. 7 - How is heat different from temperature?Ch. 7 - Prob. 18RQCh. 7 - Prob. 19RQCh. 7 - Prob. 20RQCh. 7 - Prob. 21RQCh. 7 - Prob. 22RQCh. 7 - Could an object be orbiting another object and we...Ch. 7 - Prob. 24RQCh. 7 - How Do We Know? How is the macroscopic world you...Ch. 7 - Prob. 1PCh. 7 - Answer these questions for celestial bodies at...Ch. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 1SOPCh. 7 - Prob. 2SOPCh. 7 - Prob. 1LTLCh. 7 - Prob. 2LTLCh. 7 - Prob. 3LTLCh. 7 - Prob. 4LTLCh. 7 - Prob. 5LTLCh. 7 - Prob. 6LTLCh. 7 - Prob. 7LTL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Appendix J lists the stars that appear brightest in our sky. Are most of these hotter or cooler than the Sun? Can you suggest a reason for the difference between this answer and the answer to the previous question? (Hint: Look at the luminosities.) Is there any tendency for a correlation between temperature and luminosity? Are there exceptions to the correlation?arrow_forward(Answer don't copy with hand written please)As a star runs out of hydrogen to fuel nuclear fusion in its core, changes within the star usually cause it to leave the main sequence, expanding and cooling as it does so. Would a star with a radius 12 times that of the Sun, but a surface temperature 0.5 times that of the Sun, be more, or less luminous than the Sun? Show and explain your reasoning. You may assume the surface area of a sphere is A = 4πr2.arrow_forwardIf a star has a surface temperature of 3000 K but a luminosity 150 times greater than our Sun, what size is this star? Give your answer in units of the solar radius, R.arrow_forward
- The origin of the above quote (with "flame" or "candle" sometimes substituted for "light") is unclear. It is often attributed to either Lao Tzu or to the character Eldon Tyrell from the 1982 movie Blade Runner. Stars follow a similar law, although the factor isn't precisely 1/2. In this problem, you will figure out the precise factor that the quote should have to apply to stars. Using the proportionality relationships for stellar luminosity as a function of mass and stellar lifetime as a function of mass, combine the two equations to arrive at a proportionality for stellar lifetime as a function of luminosity. Consider a star with luminosity twice that of the Sun's. Compute the star's main sequence lifetime as a multiple of the Sun's main sequence lifetime. Enter your result below as a decimal. For example, if you found TT⊙=0.3, enter "0.3". (Here T is the star's lifetime and T⊙ is the Sun's main sequence lifetime.arrow_forwardI need the answer as soon as possiblearrow_forwardThe Hα spectral line has a rest wavelength of 6562.8 ˚A (remember: 1 ˚A = 10−10 m). In star A, the lineis seen at 6568.4 ˚A, in star B it’s seen at 6560.3 ˚A, and in star C it’s seen at 6562.8 ˚A. Which star ismoving the fastest (along the line of sight) and what is the radial velocity of each star?arrow_forward
- How does one go about these questions?arrow_forwardThe figure below shows the spectra of two stars on the same scale (Star A = red line; Star B = green line). The three strongest (deepest) absorption lines in each spectrum are due to the same element (they are marked with arrows in the Star A spectrum). How does the radial velocity of Star B compare to the radial velocity of Star A? (Choose the most correct answer; assume both spectra were taken from Earth.) Normalized flux 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 882 882.5 883 883.5 884 Star A Star B 884.5 885 Wavelength (nm) Star B is moving away from the Earth faster than Star A. Star A and Star B are both moving away from the Earth with the same radial velocity. Star B is moving towards the Earth faster than Star A. Star A and Star B are both moving towards the Earth with the same radial velocity.arrow_forwardIf the surface Temperature of a star was about 11000.0 K instead of 7000.0 K what is the ratio of power per square meter of the 11000.0 K star compared to power per square meter of the 7000.0 K star? How many times greater is the magnitude of power per square meter of the 11000.0 K star compared to the 7000.0 K stararrow_forward
- A star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)arrow_forwardA star has a measured radial velocity of 300 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 657.18 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) nm Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-del ta (410.2 nm)arrow_forwardStar 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1 = 7.2 and B2 = 8.5. If star 2 has a distance that is 10 times further than star 1, what are the luminosity ratios, L1/L2, in both B- and V-bands?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax