Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 23E
Seasons are a result of the inclination of a planet’s axial tilt being inclined from the normal of the planet’s orbital plane. For example, Earth has an axis tilt of 23.4° (Appendix F). Using information about just the inclination alone, which planets might you expect to have seasonal cycles similar to Earth, although different in duration because orbital periods around the Sun are different?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are 12 lunar months in a lunar calendar. The numbers of days of the lunar months differ by at most one day. The average number of days of a lunar month is approximately equal to the period of the lunar phase cycle. One year in a solar calendar is approximately equal to the period of the cycle of seasons. Which of the following can roughly keep a lunar calendar synchronized with a solar calendar?
a) Adding a thirteenth lunar month to 7 out of every 19 years.
b) Adding an extra day every 4 years.
c) Having an extra month with 5 days each year.
d) Skipping a lunar month every 7 out of 19 years.
EAn astronaut arrives on the planet Oceania and climbs to the top of a cliff overlooking the sea. The astronaut's eye is 100 m above
the sea level and he observes that the horizon in all directions appears to be at angle of 5 mrad below the local horizontal. What is
the radius of the planet Oceania at sea level? How far away is the horizon from the astronaut?
6000 km and 50 km
3600 km and 20 km
2000 km and 40 km
8000 km and 40 km
A)At what altitude would a geostationary sattelite need to be above the surface of Mars? Assume the mass of Mars is 6.39 x 1023 kg, the length of a martian solar day is 24 hours 39minutes 35seconds, the length of the sidereal day is 24hours 37minutes 22seconds, and the equatorial radius is 3396 km. The answer can be calculated using Newton's verison of Kepler's third law.
Chapter 7 Solutions
Astronomy
Ch. 7 - Venus rotates backward and Uranus and Pluto spin...Ch. 7 - What is the difference between a differentiated...Ch. 7 - What does a planet need in order to retain an...Ch. 7 - Which type of planets have the most moons? Where...Ch. 7 - What is the difference between a meteor and a...Ch. 7 - Explain our ideas about why the terrestrial...Ch. 7 - Do all planetary systems look the same as our own?Ch. 7 - What is comparative planetology and why is it...Ch. 7 - What changed in our understanding of the Moon and...Ch. 7 - If Earth was to be hit by an extraterrestrial...
Ch. 7 - List some reasons that the study of the planets...Ch. 7 - Imagine you are a travel agent in the next...Ch. 7 - What characteristics do the worlds in our solar...Ch. 7 - How do terrestrial and giant planets differ? List...Ch. 7 - Why are there so many craters on the Moon and so...Ch. 7 - How do asteroids and comets differ?Ch. 7 - How and why is Earth’s Moon different from the...Ch. 7 - Where would you look for some “original”...Ch. 7 - Describe how we use radioactive elements and their...Ch. 7 - What was the solar nebula like? Why did the Sun...Ch. 7 - What can we learn about the formation of our solar...Ch. 7 - Earlier in this chapter, we modeled the solar...Ch. 7 - Seasons are a result of the inclination of a...Ch. 7 - Again using Appendix F, which planet(s) might you...Ch. 7 - Again using Appendix F, which planets might you...Ch. 7 - Using some of the astronomical resources in your...Ch. 7 - Explain why the planet Venus is differentiated,...Ch. 7 - Would you expect as many impact craters per unit...Ch. 7 - Using Appendix G, complete the following table...Ch. 7 - Calculate the density of Jupiter. Show your work....Ch. 7 - Calculate the density of Saturn. Show your work....Ch. 7 - What is the density of Jupiter’s moon Europa (see...Ch. 7 - Look at Appendix F and Appendix G and indicate the...Ch. 7 - Barnard’s Star, the second closest star to us, is...Ch. 7 - A radioactive nucleus has a half-life of 5108...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
20.1 Compare and contrast the terms in each of the following pairs:
population and gene pool
random mating and ...
Genetic Analysis: An Integrated Approach (3rd Edition)
WHAT IF? Most prairies experience regular fires, typically every few years. If these disturbances were relativ...
Campbell Biology (11th Edition)
78. A breaker of nitric acid is neutralized with calcium hydroxide. Write a balanced molecular equation and a n...
Introductory Chemistry (6th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Again using Appendix F, which planet(s) might you expect not to have significant seasonal activity? Why?arrow_forwardAgain using Appendix F, which planets might you expect to have extreme seasons? Whyarrow_forwardBased on what you've learn on the impact of the Earth-Sun distance on the seasons, what can you say about the the cause of the seasons? (Give ALL correct answers, i.e., B, AC, BCD...)A) Earth's axis is tilted an an angle of 23.5 degrees compared to a line perpendicular (straight up and down) to its orbit, which is the main cause for the seasons.B) Earth's speed varies in its orbit around the Sun, giving us summer when Earth is moving fastest and winter when Earth is moving slowest.C) The Earth-Sun distance play a major role in creating seasons on Earth.D) The tilt of Earth's axis causes the Northern Hemisphere to be closer to the Sun than the southern hemisphere in summer, and vice versa in winter. E) The tilt of Earth's axis causes different portions of the Earth to receive more or less direct sunlight at different times of year.F) Earth's Northern Hemisphere is always tilted away from the Sun at an angle of 23.5 degrees.G) Earth's Northern Hemisphere is always tilted toward the Sun…arrow_forward
- A rotation rate, or frequency, of 500 nHz corresponds to a rotation period of 23 days—it takes 23 days for material to follow one complete circle around the Sun. Furthermore, the frequency and period are inversely proportional to one another: if one is doubled, the other is halved. Given these facts, what is the approximate rotation period (in days) for equatorial material at the Sun's surface? (Use your answer to the previous question as the rotation rate.)arrow_forwardWhen you step from the shade into the sunlight, the Sun’s heat is as evident as the heat from hot coals in a fireplace in an otherwise cold room. You feel the Sun’s heat not because of its high temperature (higher temperatures can be found in some welder’s torches), but because the Sun is big. Which do you estimate is larger, the Sun’s radius or the distance between the Moon and Earth? Check your answer in the list of physical data on the inside back cover. Do you find your answer surprising?arrow_forwardImagine you grew up on Mars, whose semi-major axis is 1.5 AU. In observing the planets over your lifetime from the Martian surface, what is the largest angular separation you would see between the Earth and the Sun? Take the orbits of the Earth and Mars to be circular.arrow_forward
- Use the small-angle formula to calculate the angular diameter (in arc minutes) of Mars (d = 6.79 ✕ 103 km) as seen from Earth if Mars were at the location of the Sun (D = 1.5 ✕ 108 km).arrow_forwardPure, solid water ice has an albedo A≈0.35. What is the minimum distance from the Sun at which a rapidly rotating ice cube would remain frozen? Between which two planets does this distance lie?arrow_forwardSpeaking of Mercury, approximately how long is one year on the planet closest to the Sun? The sizes of the objects in our model of the solar system are not to scale; however, the relative orbital periods around the Sun are. So you can answer this question by counting the revolutions of Mercury during one Earth year. a) Approximately 90 Earth days b) Approximately 370 Earth days c) Approximately 120 Earth days d) Approximately 50 Earth daysarrow_forward
- The earth revolves around the sun in exactly 365 1/4 days which is equivalent to 1 year. To make up for the loss of 1/4 day, the calendar was adjusted so that we have a leap year for every 4 years. If the earth were to speed in its motion slightly so that a year would be completed in exactly 365 days and 6 hours, how often would we need to have a leap year?arrow_forwardThe planetarium is making a scale model of the solar system. If they use a basketball to represent the sun. How far from the basketball should the earth be?arrow_forwardFor an entire year, you carefully plot and track the sun's position relative to the background stars (i.e., the celestial sphere). Which of the following is an accurate description of what you observe for the sun's annual drift relative to the celestial sphere? Select one: a. the sun appears to shift only north or south, with no apparent drift east or west b. each day, the sun appears to drift primarily from east to west c. each day, the sun appears to drift primarily from west to east d. the sun does not appear to drift at all relative to the background stars, as defined by our 24 hour dayarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY