Student Solutions Manual for Oxtoby/Gillis/Butler's Principles of Modern Chemistry, 8th
Student Solutions Manual for Oxtoby/Gillis/Butler's Principles of Modern Chemistry, 8th
8th Edition
ISBN: 9798214170251
Author: David W. Oxtoby, H. Pat Gillis and Laurie J. Butler
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 1P
Interpretation Introduction

Interpretation:

Whether a gasoline can have octane number more than 100 is to be explained.

Concept Introduction:

A number which is used to measure the antiknock properties of a fuel like gasoline is known as octane number.

A standard measure of the performance of a liquid fuel or engine is known as octane number. The high value of octane number results in the more compression of the fuel which can withstand before igniting, whereas, the low value of octane number is ideal for diesel engines.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

Yes, it is possible for a gasoline with octane number more than 100.

Explanation of Solution

Whether the combustion of gasoline can occur smoothly is identified quantitatively by octane number of the gasoline. This is defined by selecting one compound as a reference which causes high amount of knocking and another which causes negligible or no knocking.

In early days, pure 2,2,4-trimethylpentane burns smoothly (no knocking) is identified and octane number was assigned as 100 whereas pure heptane caused knocking while combustion and octane number was assigned as 0.

A standard mixture of these compounds defines a scale from 0 to 100 for determining the knocking is caused by gasolines which are real. If a sample of gasoline results in similar quantity of knocking in a test engine as a mixture of 10 % of heptane and 2,2,4-trimethylpentane and it is allotted the octane number as 90.

But if a gasoline (particular) sample results in less amount of knocking in a test engine in comparison to knocking resulted by a mixture of 100 % 2,2,4-trimethylpentane and 0 % heptane, then octane number is assigned as more than 100.

Hence, it is possible for a gasoline having octane number more than 100.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).   Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%.   Part B - Compare difference in free energy to the thermal…
Please correct answer and don't used hand raiting
need help please and thanks dont understand a-b Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).   Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%.   Part B - Compare difference in free energy to the thermal energy Divide the…

Chapter 7 Solutions

Student Solutions Manual for Oxtoby/Gillis/Butler's Principles of Modern Chemistry, 8th

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License