Rework Example 7.1, now taking the zero of potential energy at street level. EXAMPLE 7.1 Gravitational Potential Energy: Riding the Elevator A 55-kg engineer leaves her office on the 33rd floor of a skyscraper and takes an elevator up to the 59th floor. Later she descends to street level. If the engineer chooses the zero of potential energy at her office and if the distance from one floor to the next is 3.5 m. what’s the potential energy when the engineer is (a) in her office, (b) on the 59th floor, and (c) at street level?
Rework Example 7.1, now taking the zero of potential energy at street level. EXAMPLE 7.1 Gravitational Potential Energy: Riding the Elevator A 55-kg engineer leaves her office on the 33rd floor of a skyscraper and takes an elevator up to the 59th floor. Later she descends to street level. If the engineer chooses the zero of potential energy at her office and if the distance from one floor to the next is 3.5 m. what’s the potential energy when the engineer is (a) in her office, (b) on the 59th floor, and (c) at street level?
Rework Example 7.1, now taking the zero of potential energy at street level.
EXAMPLE 7.1 Gravitational Potential Energy: Riding the Elevator
A 55-kg engineer leaves her office on the 33rd floor of a skyscraper and takes an elevator up to the 59th floor. Later she descends to street level. If the engineer chooses the zero of potential energy at her office and if the distance from one floor to the next is 3.5 m. what’s the potential energy when the engineer is (a) in her office, (b) on the 59th floor, and (c) at street level?
23.
What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?
10.
A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?
9.
Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds.
Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.