Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 32P
A carbon monoxide molecule can be modeled as a carbon atom and an oxygen atom connected by a spring. If a displacement of the carbon by 1.46 pm from its equilibrium position relative to the oxygen increases the molecule’s potential energy by 0.0125 eV, what’s the spring constant?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.00 kQ
b
g
E
Ez
R3
70.0 V
T60.0 V
80.0 V
R2
3.00 kQ
C=10µF
2.00 kQ
Under steady state condition, Find the potential difference between points c and f (V;-V). (Using Kirchhoff's rules )
Your answer:
O A) Vf-Vc=-69.2 V
O B) Vf-Vc=-67.2 V
O C) Vf-Vc=+67.2 V
O D) Vf-Vc=+65.2 V
O E) Vf-Vc=-65.2 V
Consider the following potential V(x) = 3x2 + 4.x + 3. The equilibrium
and it is a
position is located at
equilibrium
Consider the following potential V(x) = 3x2 + 4x + 3. The equilibrium
position is located at
and it is a
equilibrium
2, instable
2, stable
Option 1
Option 2
instable
, stable
Option 3
Option 4
Chapter 7 Solutions
Essential University Physics (3rd Edition)
Ch. 7.1 - Suppose it takes the same amount of work to push a...Ch. 7.2 - Gravitational force actually decreases with...Ch. 7.3 - A bowling ball is tied to the end of a long rope...Ch. 7.4 - For which of the following systems is (1)...Ch. 7.5 - A bowling ball is tied to the end of a long rope...Ch. 7.6 - The figure shows the potential energy associated...Ch. 7 - Figure 7.14 shows force vectors at different...Ch. 7 - Is the conservation-of-mechanical-energy principle...Ch. 7 - Why cant we define a potential energy associated...Ch. 7 - Can potential energy be negative? Can kinetic...
Ch. 7 - If the potential energy is zero at a given point,...Ch. 7 - If the difference in potential energy between two...Ch. 7 - If the difference in potential energy between two...Ch. 7 - A tightrope walker follows an essentially...Ch. 7 - If conservation of energy is a law of nature, why...Ch. 7 - Determine the work you would have to do to move a...Ch. 7 - Now lake Fig. 7.15 lo lie in a vertical plane, and...Ch. 7 - Rework Example 7.1, now taking the zero of...Ch. 7 - Find the potential energy associated with a 70-kg...Ch. 7 - You fly from Bostons Logan Airport, at sea level,...Ch. 7 - The potential energy associated with a 60-kg hiker...Ch. 7 - How much energy can be stored in a spring with k =...Ch. 7 - How far would you have to stretch a spring with k...Ch. 7 - A biophysicist grabs the ends of a DNA strand with...Ch. 7 - A skier starts down a frictionless 32 slope. After...Ch. 7 - A 10,000-kg Navy jet lands on an aircraft carrier...Ch. 7 - A 120-g arrow is shot vertically from a bow whose...Ch. 7 - In a railroad yard, a 35,000-kg boxcar moving at...Ch. 7 - You work for a toy company, and youre designing a...Ch. 7 - A 54-kg ice skater pushes off the wall of the...Ch. 7 - Prob. 25ECh. 7 - A particle slides along the frictionless track...Ch. 7 - A particle slides back and forth on a frictionless...Ch. 7 - A particle is trapped in a potential well...Ch. 7 - The reservoir at Northfield Mountain Pumped...Ch. 7 - The force in Fig. 7.14a is given by Fa=FoJ, where...Ch. 7 - A 1.50-kg brick measures 20.0 cm 8.00 cm 5.50...Ch. 7 - A carbon monoxide molecule can be modeled as a...Ch. 7 - A more accurate expression for the force law of...Ch. 7 - For small stretches, the Achilles tendon can be...Ch. 7 - The force exerted by an unusual spring when its...Ch. 7 - The force on a particle is given by F=Al/x2, where...Ch. 7 - A particle moves along the x-axis under the...Ch. 7 - As a highway engineer, youre asked to design a...Ch. 7 - A spring of constant k, compressed a distance x,...Ch. 7 - A child is on a swing whose 3.2-m-long chains make...Ch. 7 - With x x0 = h and a = g, Equation 2.11 gives the...Ch. 7 - The nuchal ligament is a cord-like structure that...Ch. 7 - A 200-g block slides back and forth on a...Ch. 7 - Automotive standards call for bumpers that sustain...Ch. 7 - A block slides on the frictionless loop-the-loop...Ch. 7 - The maximum speed of the pendulum bob in a...Ch. 7 - A mass m is dropped from height h above the top of...Ch. 7 - A particle with total energy 3.5 J is trapped in a...Ch. 7 - (a) Derive an expression for the potential energy...Ch. 7 - In ionic solids such as NaCl (salt), the potential...Ch. 7 - Repeat Exercise 19 for the case when the...Ch. 7 - As an energy-efficiency consultant, youre asked to...Ch. 7 - A spring of constant k = 340 N/m is used to launch...Ch. 7 - A bug slides back and forth in a bowl 15 cm deep,...Ch. 7 - A 190-g block is launched by compressing a spring...Ch. 7 - A block slides down a frictionless incline that...Ch. 7 - An 840-kg roller-coaster car is launched from a...Ch. 7 - A particle slides back and forth in a frictionless...Ch. 7 - A child sleds down a frictionless hill whose...Ch. 7 - A bug lands on top of the frictionless, spherical...Ch. 7 - A particle of mass m is subject to a force...Ch. 7 - A block of weight 4.5 N is launched up a 30...Ch. 7 - Your engineering department is asked to evaluate...Ch. 7 - Your roommate is writing a science fiction novel...Ch. 7 - You have a summer job at your universitys zoology...Ch. 7 - Biomechanical engineers developing artificial...Ch. 7 - Blocks with different masses are pushed against a...Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....
Additional Science Textbook Solutions
Find more solutions based on key concepts
29.44 CALC In Fig. 29.23 the capacitor plates have area 5.00 cm2 and separation 2.00 mm. The plates are in vacu...
University Physics with Modern Physics (14th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
What is a point mutation?
Conceptual Integrated Science
Briefly discuss early SETI efforts. What do we mean by the bandwidth of a signal, and why does SETI concentrate...
Life in the Universe (4th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small particle of mass m is pulled to the top of a friction less half-cylinder (of radius R) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.15. (a) Assuming the particle moves at a constant speed, show that F = mg cos . Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating W=Fdr, find the work done in moving the particle at constant speed from the bottom to the top of the hall-cylinder. Figure P7.15arrow_forwardRank the potential energies of the four systems of particles shown in Figure OQ20.6 from largest to smallest. Include equalities if appropriate. Figure OQ20.6arrow_forwardA thin disk of mass M and radius R lies in the (x, y) plane with the z-axis passing through the center of the disk. Calculate the gravitational potential (z) and the gravitational field on the z-axis.arrow_forward
- You have three point loads, q1 x Q is located at point P1 (5,0,5)cm, q2 = Q is in P2(0,5,5)cm y q3 = (-2Q) is at P3(0,0,10)cm. If Q is 100μC, calculate the total electric field E and the potential V at point P 5 (10,10,0)cm. Position vectors are given in cm. Your answers give in SI units.arrow_forward1. How do you find the gravitational potential of two masses for any position around them that is outside the masses? Specifically, take the Earth and the Moon as an example. We need big masses like these because G is so small. Gravity is very weak. When we do electricity, we can work with smaller amounts of matter and smaller distances because electrical forces are stronger than gravitational forces. Here are the numbers https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html MEarth = 5.97 × 1024 kg (Mass of Earth) MMoon = 7.35 × 1022 kg (mass of Moon) RE-M = 3.85 × 108 m (average separation of Earth and Moon centers) REarth = 6.378 × 106 m (radius of Earth) RMoon = 1.738 × 106 m (radius of Moon)arrow_forwardTwo parallel, non-conductive, straight, infinitely long strands were uniformly charged with a positive electric charge. The linear charge density on both threads is the same and amounts to λ = 10 μC / m. The distance between the threads is d = 4 cm.Calculate the work that the external force has to do to move the point load Q = 2 μC from point A to point B in an equilibrium process. Point A is at a distance of RA = 16 cm from each of the strands, and point B is halfway between the strands. The drawing also shows that both threads are perpendicular to the drawing plane, and points A and B lie in the drawing plane.arrow_forward
- Positive electric charge QQ is distributed uniformly along a thin rod of length 2a. The rod lies along the x-axis between x=−a and x=+a (Figure 1). Calculate how much work you must do to bring a positive point charge q from infinity to the point x=+L on the x-axis, where L>a. What does your result for the potential energy U(x=+L) become in the limit a→0?arrow_forwardProblem Eight. The dielectric constants shown are ₁ 1.0, K₂ = 2.0, 0.20 m², and the distance = 3.0. The area of each plate is A between the plates is entire capacitor is 4.0 MV/m. K3 = d = 1.0 mm. The dielectric strength of the 30. Find the maximum energy (in mJ) that can be stored on the capacitor. (A) 8.0 (C) 6.0 (D) 24 (B) 1.0 (E) 36 K₁ K₂ K3arrow_forwardElectric Potential and Electric Potential Energy. A charge q1= 2.00 μCis located at the origin, and a chargeq2= -6.00 μCis located at (0, 3.00) m, as shown in the figure below. (A) Find the total electric potential due to these charges at the point P, whose coordinates are (4.00, 0) m. (B) Find the change in potential energy of the system of two charges plus a charge q3= 3.00 μCas the latter charge moves from infinity to point P.arrow_forward
- 1. Two persons were practicing social distancing to alleviate the spread of COVID-19. Social distancing requires a minimum of 3 feet distance from person to person. However, due to their eagerness to share some rumors, the two persons decided to approach each other and now within the intimate distance (12 inches). If person A weighs 60 kg. and person B weighs 68 kg, determine the work done for this act. Take G = 6.67408 x 10-11 m³ kg¬'s-2. A. 6.8076 ergs B. 8.0766 ergs C. 5.9559 ergs D. 5.5599 ergs 2. Find the moment of mass from the x-axis for y = x In(x) – 3x and y = 1 bounded by x = 3 and x = 6. The surface density is equal to 0.37 kg/units'. A. 24.0793 kg. В. -38.6209 kg C. 27.8043 kg. D. -36.8902 kg. 3. In 2019, SCUBA divers from Mexico explores the Atlantic Ocean (64 lb/ft) and finds a circular clock thought to be the ancient remnants of the legendary Atlantis. If the clock measures 1.3 ft. in diameter and depth is measured to be 1250 ft. from the surface to the center of this…arrow_forwardShow if the potential changes in the following relation V(r) In this case, we only have a non-circular closed path when n = -2 .arrow_forward3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY