Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 28E
A particle is trapped in a potential well described by U(x) = 16x2 − b, with U in joules, x in meters, and b = 4.0 J. Find the force on the particle when it’s at (a) x = 2.1 m, (b) x = 0, and (c) x = −1.4 m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particle is trapped in a potential well described by U(x)= 1.9x2−b where U is in joules, x is in meters, and b = 2.6 J. Find the force on the particle when it's at x = 2.9 m.
A 8 kg particle is in a potential given by U(x) = 1 x^4 - 7 x^2 - 3 x + 8 (J). Calculate the acceleration of the particle when it is at x = 1 m, in m/s2.
(Please answer to the fourth decimal place - i.e 14.3225)
Problem #2: Find the work done by the following force field
F(x, y) = 4(y + 6)7 i + 28x (y + 6)6 j
in moving an object from P(6, -6) to Q(4,-4), along any path.
Problem #2:
Chapter 7 Solutions
Essential University Physics (3rd Edition)
Ch. 7.1 - Suppose it takes the same amount of work to push a...Ch. 7.2 - Gravitational force actually decreases with...Ch. 7.3 - A bowling ball is tied to the end of a long rope...Ch. 7.4 - For which of the following systems is (1)...Ch. 7.5 - A bowling ball is tied to the end of a long rope...Ch. 7.6 - The figure shows the potential energy associated...Ch. 7 - Figure 7.14 shows force vectors at different...Ch. 7 - Is the conservation-of-mechanical-energy principle...Ch. 7 - Why cant we define a potential energy associated...Ch. 7 - Can potential energy be negative? Can kinetic...
Ch. 7 - If the potential energy is zero at a given point,...Ch. 7 - If the difference in potential energy between two...Ch. 7 - If the difference in potential energy between two...Ch. 7 - A tightrope walker follows an essentially...Ch. 7 - If conservation of energy is a law of nature, why...Ch. 7 - Determine the work you would have to do to move a...Ch. 7 - Now lake Fig. 7.15 lo lie in a vertical plane, and...Ch. 7 - Rework Example 7.1, now taking the zero of...Ch. 7 - Find the potential energy associated with a 70-kg...Ch. 7 - You fly from Bostons Logan Airport, at sea level,...Ch. 7 - The potential energy associated with a 60-kg hiker...Ch. 7 - How much energy can be stored in a spring with k =...Ch. 7 - How far would you have to stretch a spring with k...Ch. 7 - A biophysicist grabs the ends of a DNA strand with...Ch. 7 - A skier starts down a frictionless 32 slope. After...Ch. 7 - A 10,000-kg Navy jet lands on an aircraft carrier...Ch. 7 - A 120-g arrow is shot vertically from a bow whose...Ch. 7 - In a railroad yard, a 35,000-kg boxcar moving at...Ch. 7 - You work for a toy company, and youre designing a...Ch. 7 - A 54-kg ice skater pushes off the wall of the...Ch. 7 - Prob. 25ECh. 7 - A particle slides along the frictionless track...Ch. 7 - A particle slides back and forth on a frictionless...Ch. 7 - A particle is trapped in a potential well...Ch. 7 - The reservoir at Northfield Mountain Pumped...Ch. 7 - The force in Fig. 7.14a is given by Fa=FoJ, where...Ch. 7 - A 1.50-kg brick measures 20.0 cm 8.00 cm 5.50...Ch. 7 - A carbon monoxide molecule can be modeled as a...Ch. 7 - A more accurate expression for the force law of...Ch. 7 - For small stretches, the Achilles tendon can be...Ch. 7 - The force exerted by an unusual spring when its...Ch. 7 - The force on a particle is given by F=Al/x2, where...Ch. 7 - A particle moves along the x-axis under the...Ch. 7 - As a highway engineer, youre asked to design a...Ch. 7 - A spring of constant k, compressed a distance x,...Ch. 7 - A child is on a swing whose 3.2-m-long chains make...Ch. 7 - With x x0 = h and a = g, Equation 2.11 gives the...Ch. 7 - The nuchal ligament is a cord-like structure that...Ch. 7 - A 200-g block slides back and forth on a...Ch. 7 - Automotive standards call for bumpers that sustain...Ch. 7 - A block slides on the frictionless loop-the-loop...Ch. 7 - The maximum speed of the pendulum bob in a...Ch. 7 - A mass m is dropped from height h above the top of...Ch. 7 - A particle with total energy 3.5 J is trapped in a...Ch. 7 - (a) Derive an expression for the potential energy...Ch. 7 - In ionic solids such as NaCl (salt), the potential...Ch. 7 - Repeat Exercise 19 for the case when the...Ch. 7 - As an energy-efficiency consultant, youre asked to...Ch. 7 - A spring of constant k = 340 N/m is used to launch...Ch. 7 - A bug slides back and forth in a bowl 15 cm deep,...Ch. 7 - A 190-g block is launched by compressing a spring...Ch. 7 - A block slides down a frictionless incline that...Ch. 7 - An 840-kg roller-coaster car is launched from a...Ch. 7 - A particle slides back and forth in a frictionless...Ch. 7 - A child sleds down a frictionless hill whose...Ch. 7 - A bug lands on top of the frictionless, spherical...Ch. 7 - A particle of mass m is subject to a force...Ch. 7 - A block of weight 4.5 N is launched up a 30...Ch. 7 - Your engineering department is asked to evaluate...Ch. 7 - Your roommate is writing a science fiction novel...Ch. 7 - You have a summer job at your universitys zoology...Ch. 7 - Biomechanical engineers developing artificial...Ch. 7 - Blocks with different masses are pushed against a...Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....Ch. 7 - Nuclear fusion is the process that powers the Sun....
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write each number in scientific notation.
11. 0.000065
Applied Physics (11th Edition)
* You have a ball bearing ano a bowl. You let the ball roll down from the top of the bow; it moves up ano down ...
College Physics
A solid sphere contains positive charge uniformly distributed throughout its volume. Is the potential at its ce...
Essential University Physics: Volume 2 (3rd Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
1. In uniform circular motion, which of the following are constant: speed, velocity, angular velocity, centripe...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A mysterious force acts on all particles along a particular line and always points towards a particular point P on the line. The magnitude of the force on a particle increases as the cube of the distance from that point; that is Fr3 , if the distance from P to the position of the particle is r. Let b be the proportionality constant, and write the magnitude of the force as F=br3. Find the potential energy of a particle subjected to this force when the particle is at a distance D from P, assuming the potential energy to be zero when the particle is at P.arrow_forwardConsider a particle on which a force acts that depends on the position of the particle. This force is given by . Find the work done by this force when the particle moves from the origin to a point 5 meters to the right on the x-axis.arrow_forwardIf the net work done by external forces on a particle is zero, which of the following statements about the particle must be true? (a) Its velocity is zero. (b) Its velocity is decreased. (c) Its velocity is unchanged. (d) Its speed is unchanged. (e) More information is needed.arrow_forward
- A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance?arrow_forwardAs a young man, Tarzan climbed up a vine to reach his tree house. As he got older, he decided to build and use a staircase instead. Since the work of the gravitational force mg is path Independent, what did the King of the Apes gain in using stairs?arrow_forwardA particle of mass 2.0 kg moves under the influence of the force F(x)=(3/x)N. If its speed at x=2.0 m is v=6.0 m/s, what is its speed at x = 7.0 m?arrow_forward
- A 4.00-kg particle moves from the origin to position , having coordinates x = 5.00 m and y = 5.00 m (Fig. P7.31). One force on the particle is the gravitational force acting in the negative y direction. Using Equation 7.3, calculate the work done by the gravitational force on the particle as it goes from O to along (a) the purple path, (b) the red path, and (c) the blue path, (d) Your results should all be identical. Why? Figure P7.31arrow_forward(a) A force F=(4xi+3yj), where F is in newtons and x and y are in meters, acts on an object as the object moves in the x direction from the origin to x = 5.00 m. Find the work W=Fdr done by the force on the object. (b) What If? Find the work W=Fdr done by the force on the object if it moves from the origin to (5.00 m, 5.00 m) along a straightline path making an angle of 45.0 with the positive x axis. Is the work done by this force dependent on the path taken between the initial and final points?arrow_forwardThe force F(x,y,z)=yz i+xz j+xy k is conservative i.e. it can be expressed as the gradient of a scalar field, U(x,y,z)=xyz. Calculate the work done by F along the path x=cos(t) ,y=sin(t) ,z=sin(t)cos(t), where −π/4 ≤ t ≤ π/4arrow_forward
- 1.arrow_forwardProblem Thirteen. A potential energy function is given by U(r)=U2 where o = 2.00 m r r and U, = 1.00 J. Find the magnitude of the force at r= 1.00 m. Give an answer in kN. 25.) (A) 280 (В) 106 (С) 420 (D) 470 (E) 530arrow_forwarda particle is moving under the potential V(x)=cx³-dx². Here c and d are constants. The particle is at rest initially and is at stable point. Calculate the minimum speed of the particle when it reached to unstable point.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY