Concept explainers
Repeal Prob. 7-112, but with the distance r from the sound source as an additional independent parameter.
(a)
A dimensionless relationship for I as a function of the other parameters by using the method of repeating variables in mass-based primary dimensions by using distance r from the sound source as an additional independent parameter.
Answer to Problem 113P
Dimensionless relationship between sound intensity and remaining parameter.
Explanation of Solution
Given Information:
Concept used:
The mass-based primary dimension will be used in this question. In this system all the possible variables are replaced by the mass. Mass, time length dimensions are represented as, [M],[L] and [t].
Concept of Buckingham's Pi method will also be used. It is represented as-
Where,
n= number of physical variables
k =independent physical quantities
n = total number of variable parameters
Calculation:
Primary dimensions of each parameter,
The total mass of parameters, n = 5
No. Of primary dimensions, j = 3
Expected no of
Dependant
Rewriting,
Mass,
Time,
Length,
Putting value in
Dependant Pi using independent variable P.
Mass,
Time,
Length,
Putting values in
Thus, from the equation of
Conclusion:
In this way, we are able to produce a dimensionless relationship for sound intensity using an independent parameter.
(b)
The expression for dimensionless relationship of I by using the force-based system of repeating variables by using distance r from the sound source as an additional independent parameter.
Answer to Problem 113P
Intensity by using force-based primary dimension system
For three repeating variables,
Explanation of Solution
Given:
Concept Used:
The force-based primary dimension will be used in this question. In this system all the possible variables are replaced by the mass. Force, time, length dimensions are represented as, [F], [L] and [t].
Concept of Buckingham's Pi method will also be used. It is represented as,
Where,
n= number of physical variables
k =independent physical quantities
n = total number of variable parameters
Calculation:
Now, the primary dimensions of all parameters are given below:
speed of sound =
density =
pressure level =
Sound Intensity,
The total mass of parameters, n = 5
No. Of primary dimensions, j = 3
Expected no of
Dependent p is calculated by using the I dependent variable.
Therefore,
By using primary dimensions,
For,
From equ(1) and equ (2),
Equating the exponents of both sides,
For force:
For time:
Putting the values of a1 and b1 in equation (1),
Dependent p is calculated by using P independent variable.
Therefore,
By using primary dimensions,
For,
From equ(3) and equ (4),
Equating the exponents of both sides,
For mass:
For time:
Putting the values of a2 and b2 in equation (3),
From equation (a) and (b),
Conclusion:
Intensity by using force-based primary dimension system.
For three repeating variables,
Want to see more full solutions like this?
Chapter 7 Solutions
Fluid Mechanics: Fundamentals and Applications
- Solve 4.9 row a USING THE ANALYTICAL METHODarrow_forwardcutting Instructions: Do not copy the drawing. Draw In third-angle orthographic projection, and to scale 1:1, the following views of the hinge: A sectional front view on A-A A top view ⚫ A right view (Show all hidden detail) Show the cutting plane in the top view . Label the sectioned view Note: All views must comply with the SABS 0111 Code of Practice for Engineering Drawing. Galaxy A05s Assessment criteria: ⚫ Sectional front view 026 12 042 66 [30] 11 10arrow_forward1. Plot the moment (M), axial (N), and shear (S) diagrams as functions of z. a) b) F₁ = 1250 N F₁ = 600 N M₁ = 350 000 N mm F2 = 500 N 200 N a = 600 mm b=1000 mm a=750 mm b = 1000 mm d) M₁ = 350 000 N mm F₁ = 600 N F₂ =200 N a = 600 mm b = 1000 mm M₁ 175 000 Nmm F = 900 N a-250 mm b-1000 mm -250 mm. Figure 1: Schematics problem 1.arrow_forward
- Given the following cross-sections (with units in mm): b) t=2 b=25 h=25 t = 1.5 b=20 b=25 t=2 I t = 1.5 a=10 b=15 h-25 b=15 t=3 T h=25 Figure 3: Cross-sections for problem 2. 1. For each of them, calculate the position of the centroid of area with respect to the given coordinate system and report them in the table below. 2. For each of them, calculate the second moments of inertia I... and I, around their respective centroid of area and report them in the table below. Note: use the parallel axes theorem as much as possible to minimize the need to solve integrals. Centroid position x y box Moment of inertia lyy by a) b) c) d) e)arrow_forwardProblem 1: Analyze the canard-wing combination shown in Fig. 1. The canard and wing are made of the same airfoil section and have AR AR, S = 0.25, and = 0.45% 1. Develop an expression for the moment coefficient about the center of gravity in terms of the shown parameters (, and zg) and the three-dimensional aerodynamic characteristics of the used wing/canard (CL C and CM). 2. What is the range of the cg location for this configuration to be statically stable? You may simplify the problem by neglecting the upwash (downwash) effects between the lifting surfaces and the drag contribution to the moment. You may also assume small angle approximation. Figure 1: Canard-Wing Configuration.arrow_forwardProblem 2: Consider the Boeing 747 jet transport, whose layout is shown in Fig. 2 and has the following characteristics: xoa 0.25, 8 5500/2, b 195.68ft, 27.31ft, AR, 3.57, V = 0.887 Determine the wing and tail contributions to the CM-a curve. You may want to assume CM, reasonable assumptions (e.g., -0.09, 0, -4°. i=0.0°, and i = -2.0°. Make any other 0.9).arrow_forward
- Z Fy = 100 N Fx = 100 N F₂ = 500 N a = 500 mm b = 1000 mm Figure 2: Schematics for problem 3. 1. Draw the moment (M), axial (N), and shear (S) diagrams. Please note that this is a 3D problem and you will have moment (M) and shear (S) along two different axes. That means that you will have a total of 5 diagrams.arrow_forwardAn ideal gas with MW of 29 g/mol, cp = 1.044 kJ/kgK and c₁ = 0.745 kJ/kgK contained in a cylinder-piston assembly initially has a pressure of 175 kPa, a temperature of 22°C, and a volume of 0.30 m³. It is heated slowly at constant volume (process 1-2) until the pressure is doubled. It is then expanded slowly at constant pressure (process 2-3) until the volume is doubled. Draw a figure of the system and the PV diagram showing each state and the path each process takes. Determine the total work done by the system and total heat added (J) in the combined process.arrow_forwardplease explain each method used, thank youarrow_forward
- Determine the resultant loadings acting on the cross sections at points D and E of the frame.arrow_forwardA spring of stiffness factor 98 N/m is pulled through 20 cm. Find the restoring force and compute the mass which should be attached so as to stretch in spring by same amount.arrow_forwardL 2L A M B qarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY