Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 89P
To determine
The primary dimension of electric capacitance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer with the sketches.
The beam is made of elastic perfectly plastic material. Determine the shape factor for the cross
section of the beam (Figure Q3). [Take σy = 250 MPa, yNA = 110.94 mm, I = 78.08 x 106 mm²]
y
25 mm
75 mm
I
25 mm
200 mm
25 mm
125
Figure Q3
A beam of the cross section shown in Figure Q3 is made of a steel that is assumed to be elastic-
perfectectly plastic material with E = 200 GPa and σy = 240 MPa. Determine:
i.
The shape factor of the cross section
ii.
The bending moment at which the plastic zones at the top and bottom of the bar are 30
mm thick.
15 mm
30 mm
15 mm
30 mm
30 mm
30 mm
Chapter 7 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 7 - What is the difference between a dimension and a...Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 13PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 16PCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 26PCh. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 29PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - In an oscillating compressible flow field the...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Prob. 40PCh. 7 - Some students want to visualize flow over a...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 50PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 57PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 63PCh. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 73PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 75CPCh. 7 - Prob. 76CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - Prob. 83PCh. 7 - A small wind tunnel in a university's...Ch. 7 - There are many established nondimensional...Ch. 7 - Prob. 86CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - From fundamental electronics, the current flowing...Ch. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - A liquid delivery system is being designed such...Ch. 7 - Prob. 103PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 116PCh. 7 - Prob. 117PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - Prob. 122PCh. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - A one-third scale model of a car is to be tested...Ch. 7 - Prob. 131PCh. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 133PCh. 7 - Prob. 134PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 136P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild, using: (a) The maximum shearing stress theory (b) The maximum distortion energy theory T Figure Q1arrow_forwardAn external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forwardso A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forward
- Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardI need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forward
- chanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forwardA thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forwardA ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forward
- The gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forwardә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dimensional Analysis - in physics; Author: Jennifer Cash;https://www.youtube.com/watch?v=c_ZUnEUlTbM;License: Standard youtube license