Operations Management (McGraw-Hill Series in Operations and Decision Sciences)
Operations Management (McGraw-Hill Series in Operations and Decision Sciences)
12th Edition
ISBN: 9780078024108
Author: William J Stevenson
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 7, Problem 10P

a)

Summary Introduction

To determine: The standard time for the operation.

Introduction: The amount of the dependency on human effort by an organization in terms of achieving its goals is given by the work design. It is directly linked to the productivity of an organization where good work design helps in achieving high productivity.

a)

Expert Solution
Check Mark

Answer to Problem 10P

The standard time for the operation is 5.80 minutes.

Explanation of Solution

Given information:

ElementPerformance ratingObservations (minutes per cycles)Allowance
1 2 3 4 5 6
1 1.1 1.2 1.17 1.16 1.22 1.24 1.15 0.15
2 1.15 0.83 0.87 0.78 0.82 0.85 0 0.15
3 1.05 0.58 0.53 0.52 0.59 0.6 0.54 0.15

Formula:

Standardtime=Normaltime×Allowancefactor=NT×AFNT=Observedtime×PerformanceRatingAFjob=1+A

Calculation of standard time of operation:

ElementPerformance ratingObservations (minutes per cycles)AllowanceObserved timeNormal timeAfjobStandard time
1 2 3 4 5 6
1 1.1 1.2 1.17 1.16 1.22 1.24 1.15 0.15 1.198 1.317 1.15 1.52
2 1.15 0.83 0.87 0.78 0.82 0.85 0 0.15 0.83 0.954 1.15 1.10
3 1.05 0.58 0.53 0.52 0.59 0.6 0.54 0.15 0.564 0.592 1.15 0.68
Standard time for operation 3.29

Excel Worksheet:

Operations Management (McGraw-Hill Series in Operations and Decision Sciences), Chapter 7, Problem 10P , additional homework tip  1

Element 1:

Observed time is calculated by taking mean for the 1.2, 1.17, 1.16, 1.22, 1.24 and 1.15 which gives 1.198.

Normal time is calculated by multiplying observed timing, 1.198 and performance rating, 1.1 which yields 1.317 minutes.

Allowance factor is calculated by adding 1 with the allowance factor 0.15 to give 1.15.

ST=NT×AFjob=1.317minutes×1.15=1.52minutes

Standard time for element 1 is calculated by multiplying normal time of 1.317 minutes with allowance factor of 1.15 which gives 1.52 minutes.

Same process applies for element 2 and 3 which yields the standard times as 1.10 and 0.68. The standard time for operation is obtained by adding 1.52, 1.10 and 1.68 minutes which gives 3.29 minutes.

Hence, the standard time for the operation is 3.29 minutes.

b)

Summary Introduction

To determine: The number of observations for element 2.

Introduction: The amount of the dependency on human effort by an organization in terms of achieving its goals is given by the work design. It is directly linked to the productivity of an organization where good work design helps in achieving high productivity.

b)

Expert Solution
Check Mark

Answer to Problem 10P

The number of observations for element 2 is 67.

Explanation of Solution

Given information:

ElementPerformance ratingObservations (minutes per cycles)Allowance
1 2 3 4 5 6
1 1.1 1.2 1.17 1.16 1.22 1.24 1.15 0.15
2 1.15 0.83 0.87 0.78 0.82 0.85 0 0.15
3 1.05 0.58 0.53 0.52 0.59 0.6 0.54 0.15

Confidence= 95.5%

1% of true value

Formula:

n=(zsax¯)2

z=Number ofnormalstandarddeviationsfordesiredconfidences=Samplestandarddeviationx¯=Sample meana=Desired accuracy

Calculation of number of observations for element A:

In the above formula the sample standard deviation is calculated by,

Calculation of standard deviation:

Element 2 Differences Square of differences Standard deviation
0.83 0 00.0339
0.87 0.04 0.0016
0.78 -0.05 0.0025
0.82 -0.01 0.0001
0.85 0.02 0.0004
Mean=0.83 SSQ=0.0046

Excel worksheet:

Operations Management (McGraw-Hill Series in Operations and Decision Sciences), Chapter 7, Problem 10P , additional homework tip  2

Z value for confidence interval of 95.5% is 2.00.

The confidence interval 0.952 gives 0.4775, which is in the midway of 0.4772 (z = 2.00) and 0.4778 (z = 2.01).

  • Using z = 2.00:

n=(2.00×0.03390.01×0.83)2=66.7272

The number of observations from the standard z table for confidence level of 95.5% is calculated by dividing the product of 2.00 and 0.0339 with product of 0.01 and 0.83 and squaring the resultant which gives 66.7272.

  • Using z = 2.01:

n=(2.01×0.03390.01×0.83)2=67.3962

The number of observations from the standard z table for confidence level of 95.5% is calculated by dividing the product of 2.01 and 0.0339 with product of 0.01 and 0.83 and squaring the resultant which gives 67.3962.

Hence, the number of observation is 68.

c)

Summary Introduction

To determine: The number of observations needed to estimate the mean time for element 2 within 0.01 minute of its true value.

Introduction: The amount of the dependency on human effort by an organization in terms of achieving its goals is given by the work design. It is directly linked to the productivity of an organization where good work design helps in achieving high productivity.

c)

Expert Solution
Check Mark

Answer to Problem 10P

The number of observations needed to estimate the mean time for element 2 within 0.01 minute of its true value is 47.

Explanation of Solution

Given information:

ElementPerformance ratingObservations (minutes per cycles)Allowance
1 2 3 4 5 6
1 1.1 1.2 1.17 1.16 1.22 1.24 1.15 0.15
2 1.15 0.83 0.87 0.78 0.82 0.85 0 0.15
3 1.05 0.58 0.53 0.52 0.59 0.6 0.54 0.15

Confidence= 95.5%

0.10 minute of actual value.

Formula:

n=(zse)2

z=Number ofnormalstandarddeviationsfordesiredconfidences=Samplestandarddeviatione=Maximumacceptableamountoftimeerror

Calculation of number of observations for element C:

In the above formula the sample standard deviation is calculated by,

Z value for confidence interval of 95.5% is 2.00.

The confidence interval 0.952 gives 0.4775, which is in the midway of 0.4772 (z = 2.00) and 0.4778 (z = 2.01).

  • Using z = 2.00:

n=(2.00×0.03390.01)2=45.9684

The number of observations from the standard z table for confidence level of 95.5 is calculated by dividing the product of 2.00 and 0.0339 with 0.01 and squaring the resultant which gives 45.9684.

  • Using z = 2.00:

n=(2.01×0.03390.01)2=46.4292

The number of observations from the standard z table for confidence level of 95.5 is calculated by dividing the product of 2.01 and 0.0339 with 0.01 and squaring the resultant which gives 46.4292.

Hence, the number of observations needed to estimate the mean time for element 2 within 0.01 minute of its true value is 46.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
On a daily basis, the van is dispatched from Maplewood Hospital to pickup blood and platelet donations made at its local donation centers. The distances in miles between all locations may be found in the table below. Click the icon to view mileage data for Vampire Van. a. The van travels from the Hospital (A) to (B) to (C) to (D) to (E) and then returns to the Hospital (A). What is the total number of miles that the van must travel using this route? Route ABCDEA requires a total distance of miles. (Enter your response rounded to one decimal place.) More Info Maplewood City Center Westbrook Hospital (A) Donation Site (B) Donation Site (C) Municipal Park Donation Site (D) Valley Hills Donation Site (E) Maplewood 3.1 5.3 3.2 4.4 Hospital (A) City Center 3.1 6.7 2.2 4.3 Donation Site (B) Westbrook 5.3 Donation Site (C) 19 6.7 | 6.2 2.5 Municipal Park 3.2 2.2 6.2 | 4.6 Donation Site (D) Valley Hills 4.4 4.3 2.5 4.6 Donation Site (E) - ☑
The Harvey Motorcycle Company produces three models: the Tiger, a sure-footed dirt bike; the LX2000, a nimble cafe racer; and the Golden, a large interstate tourer. The month's master production schedule calls for the production of 32 Goldens, 31 LX2000s, and 38 Tigers per 10-hour shift. What average cycle time is required for the assembly line to achieve the production quota in 10 hours? 0.099 hours per motorcycle. (Enter your response rounded to three decimal places.) If mixed-model scheduling is used, how many of each model will be produced before the production cycle is repeated? The greatest common divisor of the production requirements is Therefore, the Harvey Motorcycle Company will produce Goldens, LX2000s, and Tigers. (Enter your responses as integers.)
The Harvey Motorcycle Company produces three models: the Tiger, a sure-footed dirt bike; the LX2000, a nimble cafe racer; and the Golden, a large interstate tourer. The month's master production schedule calls for the production of 32 Goldens, 31 LX2000s, and 38 Tigers per 10-hour shift. What average cycle time is required for the assembly line to achieve the production quota in 10 hours? hours per motorcycle. (Enter your response rounded to three decimal places.)

Chapter 7 Solutions

Operations Management (McGraw-Hill Series in Operations and Decision Sciences)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Management, Loose-Leaf Version
Management
ISBN:9781305969308
Author:Richard L. Daft
Publisher:South-Western College Pub
Text book image
Principles of Management
Management
ISBN:9780998625768
Author:OpenStax
Publisher:OpenStax College
Text book image
Understanding Management (MindTap Course List)
Management
ISBN:9781305502215
Author:Richard L. Daft, Dorothy Marcic
Publisher:Cengage Learning
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,