OPEARATIONS MANAG.REV CUSTOM 2017
17th Edition
ISBN: 9781323590058
Author: Pearson
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 33P
Summary Introduction
To determine: The average outgoing quality
Introduction: Statistical process control is the method that helps to measure and control the quality during the process of production.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A metal fabricator produces connecting rods with an outer diameter that has a 1 ± 0.04 inch specification. A machine operator takes several sample measurements over time and determines the sample mean outer diameter to be 1.003 inches with a standard deviation of 0.020 inch. Calculate the process capability index.
Five data entry operators work at the data process-ing department of the Birmingham Bank. Each day for 30 days,
the number of defective records in a sample of 250 records typedby these operators has been noted, as follows:
a) Establish 3s upper and lower control limits.b) Why can the lower control limit not be a negative number?
c) The industry standards for the upper and lower control lim-its are 0.10 and 0.01, respectively. What does this imply about
Birmingham Bank’s own standards?
2.
x and R charts with n = 4 are used to monitor a normally distributed
quality characteristic. The control chart parameters are
x Chart
R Chart
UCL = 815
UCL = 46.98
%3D
Center line = 800
Center line = 20.59
LCL = 785
LCL = 0
Both charts exhibit control. What is the probability that a shift in the process mean to
790 will be detected on the first sample following the shift? Please show all your
work for full credit.
Chapter 6 Solutions
OPEARATIONS MANAG.REV CUSTOM 2017
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - What does the formula L = D2C mean?Ch. 6.S - Prob. 19DQCh. 6.S - An avant-garde clothing manufacturer runs a series...Ch. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Kathleen McFaddens restaurant in Boston has...Ch. 6.S - Develop a flowchart [as in Figure 6.6 (e) and...Ch. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 26PCh. 6.S - Prob. 27PCh. 6.S - Prob. 28PCh. 6.S - Prob. 29PCh. 6.S - Prob. 30PCh. 6.S - Prob. 31PCh. 6.S - Prob. 32PCh. 6.S - Prob. 33PCh. 6.S - Prob. 34PCh. 6.S - Prob. 35PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Prob. 2.2VCCh. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - What does the formula L = D2C mean?Ch. 6 - Prob. 19DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Develop a flowchart [as in Figure 6.6 (e) and...Ch. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 1CSCh. 6 - How could the survey have been more useful?Ch. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 2.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- The defect rate for your product has historically been about 2.00%. For a sample size of 500, the upper and lower 3-sigma control chart limits are: UCL = (enter your response as a number between 0 and 1, rounded to four decimal places).arrow_forwardLinda Boardman, Inc., an equipment manufacturer in Boston, has submitted a sample cutoff valve to improve your manufacturing process. Your process engineering department has conducted experiments and found that the valve has a mean of 8.00 and a standard deviation of .04. Your desired performance is = 8.0 ± 30, where o = 0.047. Is the following statement true or false? Can Boardman produce the valve within the specified tolerance? (TRUE=yes, it can; FALSE=no, it cannot) O True O Falsearrow_forwardIf a point on a control chart falls outside one of the control limits, this suggests that the process variation is random and should not be investigated . True or falsearrow_forward
- In quality assurance, we use P-charts for discrete defects when there can be more than one defect per unit. True or False. Why?arrow_forwardThe defect rate for your product has historically been about 1.00%. For a sample size of 400, the upper and lower 3-sigma control chart limits are: UCL, = (enter your response as a number between 0 and 1, rounded to four decimal places). р LCL, = (enter your response as a number between 0 and 1, rounded to four decimal places).arrow_forwardA researcher wishes to estimate the proportion of fish in a certain lake that is inedible due to pollution of the lake. How large a sample should be tested in order to be 99% confident that the true proportion of inedible fish is estimated to within 8%?arrow_forward
- A metal fabricator produces connecting rods with an outer diameter that has a 1 ± 0.04 inch specification. A machine operator takes several sample measurements over time and determines the sample mean outer diameter to be 1.002 inches with a standard deviation of 0.009 inch. Calculate the process capability. 1.56 1.62 1.48 1.41 1.35arrow_forwardA process has a sigma=rating of 3.35-o. Fraction defective for the process is P(Z Z (UTL)). What is the value of Z (LTL)?arrow_forwardLinda Boardman, Inc., an equipment manufacturer in Boston, has submitted a sample cutoff valve to improve your manufacturing process. Your process engineering department has conducted experiments and found that the valve has a mean (u) of 12.00 and a standard deviation (a) of 0.04. Your desired performance is μ = 12.00 +3 standard deviations, where a = 0.045. For the given information, the process capability index (Cpk) - (round your response to three decimal places).arrow_forward
- Linda Boardman, Inc., an equipment manufacturer in Boston, has submitted a sample cutoff valve to improve your manufacturing process. Your process engineering department has conducted experiments and found that the valve has a mean (μ) of 12.00 and a standard deviation (a) of 0.04. Your desired performance is μ = 12.00 ±3 standard deviations, where σ = 0.020. For the given information, the process capability index (Cpk) = 0.875 (round your response to three decimal places).arrow_forwardA metal fabricator produces connecting rods with an outer diameter that has a 1" ± 0.04 inch specification. A machine operator takes several sample measurements over time and determines the sample mean outer diameter to be 1 inch with a standard deviation of 0.008 inch. Calculate the process capability. 1.44 1.31 2.50 1.67 1.61arrow_forwardThe overall average of a process you are attemptingto monitor at Gihan Edirisinghe Motors is 75 units. The processstandard deviation is 1.95, and the sample size is 11 = 10. Whatwould be the upper and lower control limits for a 3-sigma controlchart?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.