Introduction to General, Organic and Biochemistry
11th Edition
ISBN: 9781285869759
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.8, Problem 6.14P
Interpretation Introduction
Interpretation:
The solution which is isotonic as compared to red blood cell should be selected.
Concept introduction:
The concepts which are used here are as follows:
- Colligative Properties: The property of ideal solution which depends only on the number of particles of the solute dissolved in a definite amount of solvent and does not depends on the nature of the solute.
- Osmolarity: It is defined as the number of moles of osmotic solute concentration per litre of solution.
- Isotonic solution: If two solutions have same osmotic pressure then it is called isotonic solution.
- Van’t Hoff factor: It is defined as the ratio of the experimental value of colligative property to the calculated value of the colligative property. Since osmosis is a colligative property so the relation between van’t hoff factor and osmolarity is
Where i is the van’t hoff factor and m is the molarity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3 attempts left
Check
my work
Be sure to answer all parts.
(a) Calculate the OH concentration in an aqueous solution at 25°C with an H,O concentration of 7.15
x 10" M.
x 10
M
(b) The value of K at 50°C is 5.48 X 104. Calculate the OH concentration from the above solution at
50°C.
x 10
M
Next
Question 13
Calculate K for N2H4 +2 H202 2 N2 +4 H20 based on the following data:
N2H4 - O2 = N2+ 2H20
K= 1.5 x 10-7
H2 +½ 02 2 H20
K = 2.5 x 10-9
H2 -022 H202
K = 7.1 x 10-5
Question attached
Chapter 6 Solutions
Introduction to General, Organic and Biochemistry
Ch. 6.5 - Problem 6-1 How would we prepare 250 mL of a 4.4%...Ch. 6.5 - Prob. 6.2PCh. 6.5 - Problem 6-3 How would we prepare 2.0 L of a 1.06 M...Ch. 6.5 - Prob. 6.4PCh. 6.5 - Problem 6-5 If a 0.300 M glucose solution is...Ch. 6.5 - Problem 6-6 A certain wine contains 0.010 M NaHSO3...Ch. 6.5 - Prob. 6.7PCh. 6.5 - Problem 6-8 A concentrated solution of 15% w/v KOH...Ch. 6.5 - Problem 6-9 Sodium hydrogen sulfate, NaHSO4, which...Ch. 6.8 - Prob. 6.10P
Ch. 6.8 - Prob. 6.11PCh. 6.8 - Prob. 6.12PCh. 6.8 - Problem 6-13 What is the osmolarity of a 3.3% w/v...Ch. 6.8 - Prob. 6.14PCh. 6 - 6-15 Answer true or false. (a) A solute is the...Ch. 6 - 6-16 Answer true or false. (a) Solubility is a...Ch. 6 - 6-17 Vinegar is a homogeneous aqueous solution...Ch. 6 - 6-18 Suppose you prepare a solution by dissolving...Ch. 6 - 6-19 In each of the following, tell whether the...Ch. 6 - 6-20 Give a familiar example of solutions of each...Ch. 6 - 6-21 Are mixtures of gases true solutions or...Ch. 6 - 6-22 Answer true or false. (a) Water is a good...Ch. 6 - 6-23 We dissolved 0.32 g of aspartic acid in 115.0...Ch. 6 - Prob. 6.24PCh. 6 - 6-25 A small amount of solid is added to a...Ch. 6 - 6-26 On the basis of polarity and hydrogen...Ch. 6 - Prob. 6.27PCh. 6 - 6-28 Which pairs of liquids are likely to be...Ch. 6 - Prob. 6.29PCh. 6 - 6-30 Near a power plant, warm water is discharged...Ch. 6 - 6-31 If a bottle of beer is allowed to stand for...Ch. 6 - 6-32 Would you expect the solubility of ammonia...Ch. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - 6-35 Describe how we would prepare the following...Ch. 6 - Prob. 6.36PCh. 6 - 6-37 Calculate the w/v percentage of each of these...Ch. 6 - 6-38 Describe how we would prepare 250 mL of 0.10...Ch. 6 - 6-39 Assuming that the appropriate volumetric...Ch. 6 - 6-40 What is the molarity of each solution? (a) 47...Ch. 6 - 6-41 A teardrop with a volume of 0.5 mL contains...Ch. 6 - Prob. 6.42PCh. 6 - 6-43 The label on a sparkling cider says it...Ch. 6 - Prob. 6.44PCh. 6 - 6-45 The label on ajar of jam says it contains 13...Ch. 6 - 6-46 A particular toothpaste contains 0.17 g NaF...Ch. 6 - 6-47 A student has a bottle labeled 0.750% albumin...Ch. 6 - 6-48 How many grams of solute are present in each...Ch. 6 - 6-49 A student has a stock solution of 30.0% w/v...Ch. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - 6-53 Dioxin is considered to be poisonous in...Ch. 6 - 6-54 An industrial wastewater contains 3.60 ppb...Ch. 6 - 6-55 According to the label on a piece of cheese,...Ch. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - 6-60 Predict which of these covalent compounds is...Ch. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - 6-66 What gives nanotubes their unique optical and...Ch. 6 - 6-67 Calculate the freezing points of solutions...Ch. 6 - 6-68 If we add 175 g of ethylene glycol, C2H6O2,...Ch. 6 - Prob. 6.69PCh. 6 - 6-70 In winter, after a snowstorm, salt (NaCI) is...Ch. 6 - 6-71 A 4 M acetic acid (CH3COOH) solution lowers...Ch. 6 - Prob. 6.72PCh. 6 - 6-73 In each case, tell which side (if either)...Ch. 6 - 6-74 An osmotic semipermeable membrane that allows...Ch. 6 - 6-75 Calculate the osmolarity of each of the...Ch. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - 6-78 (Chemical Connections 6A) Oxides of nitrogen...Ch. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - 6-82 (Chemical Connections 6C) A solution contains...Ch. 6 - 6-83 (Chemical Connections 6C) The concentration...Ch. 6 - 6-84 (Chemical Connections 6D) What is the...Ch. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - 6-91 When a cucumber is put into a saline solution...Ch. 6 - Prob. 6.92PCh. 6 - 6-93 Two bottles of water are carbonated, with CO2...Ch. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - 6-96 We know that a 0.89% saline (NaCI) solution...Ch. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - 6-99 A concentrated nitric acid solution contains...Ch. 6 - 6-100 Which will have greater osmotic pressure?...Ch. 6 - Prob. 6.101PCh. 6 - Prob. 6.102PCh. 6 - 6-103 A swimming pool containing 20,000. L of...Ch. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Prob. 6.106PCh. 6 - Prob. 6.107PCh. 6 - Prob. 6.108PCh. 6 - Prob. 6.109PCh. 6 - Prob. 6.110PCh. 6 - 6-111 As noted in Section 6-8C, the amount of...Ch. 6 - 6-112 List the following aqueous solutions in...Ch. 6 - 6-113 List the following aqueous solutions in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Problem 6-5 If a 0.300 M glucose solution is available for intravenous infusion, how many milliliters of this solution are needed to deliver 10.0 g of glucose?arrow_forwardProblem 6-8 A concentrated solution of 15% w/v KOH solution is available. How would we prepare 20.0 ml, of a 0.10% w/v KOH solution?arrow_forwardProblem 6-6 A certain wine contains 0.010 M NaHSO3 (sodium bisulfite) as a preservative. How many grams of sodium bisulfite must be added to a 100. gallon barrel of wine to reach this concentration? Assume no change in volume of wine upon addition of the sodium bisulfite.arrow_forward
- Problem 8-9 Calculate the concentration of an acetic acid solution using the following data. Three 25.0-mL samples of acetic acid were titrated to a phenolphthalein end point with 0.121 M NaOH. The volumes of NaOH were 19.96 mL, 19.73 mL, and 19.79 mL.arrow_forwardQUESTION 14 What is the pH of 0.541 M dimethylammonium iodide, (CH3)2NH212 At 25°C, the Kp of (CH3)2NH is 5.9 x 104 Enter your answer in decimal format with two decimal places (value + 0.02).arrow_forwardpls help thanks!arrow_forward
- Show work plsarrow_forwardProblem 4 It takes 0.50 moles of Br,1) to titrate 25.0 mL of H,S,0 (aq) in the reaction: + 4Br, + 5H,0 – 2So + 8Br + 10H* What is the molar concentration of H,S,0,? Enter your answer in the box provided with correct units and sig. figs.: The molar concentration Answer: of H,S2O3(aq) isarrow_forwardPROBLEM 2: Write the equilibrium constant expressions for each of the following balanced chemical reactions: 1. NH¾Cls) = NH3(g) + HCl(g) 2. CH3COOH(ag) + C2H5OH(aq) = CH3COOC2H5(aq) + H2Om 3. P4(s) + 502(g) =PĄ010(s) 4. 2Fes) + (3/2)02(g) = Fe2O3(s) 5. HBrg) = (1/2)H2(g) + (1/2)Br2(g)arrow_forward
- Problem 6-9 Sodium hydrogen sulfate, NaHSO4, which dissolves in water to release H+ ion, is used to adjust the pH of the water in swimming pools. Suppose we add 560. g of NaHSO4 to a swimming pool that contains L of water at 25°C. What is the Na+ ion concentration in ppm?arrow_forward#15 problem Earrow_forwardNAOH + HCI Naci + H2o 4, What volume of 2.25M H2SO4 should be diluted with water to prepare 1.5 L of 1.20 M acid? Activity 42: Multiple Choice:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY