EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.5, Problem 9E
Interpretation Introduction
Interpretation:
To show that for Hamiltonian system,
Concept Introduction:
Using chain rule for Hamiltonian system, show that energy is conserved.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the example of injection moulding of a rubber component as shown in Figure Q3(b). The process engineer would like to optimise the strength of the component by optimising the following factors: temperature = 190°C and 210°C, pressure = 50 MPa and 100 MPa, and speed of injection = 10 mm/s and 50 mm/s. What type of mathematical model that the engineer can develop if the relationship is linear and no interactions are significant? Write down the general equation that relates the strength of the component with the process factors.
Consider the example of injection moulding of a rubber component as shown in Figure Q3(b). The process engineer would like to optimise the strength of the component by optimising the following factors: temperature = 190°C and 210°C, pressure = 50 MPa and 100 MPa, and speed of injection = 10 mm/s and 50 mm/s. What type of mathematical model that the engineer can develop if the relationship is linear and no interactions are significant? Write down the general equation that relates the strength of the component with the process factors.
(3.3) Find the fixed points of the following dynamical system:
-+v +v, v= 0+v? +1,
and examine their stability.
Chapter 6 Solutions
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
Ch. 6.1 - Prob. 1ECh. 6.1 - Prob. 2ECh. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Prob. 7ECh. 6.1 - Prob. 8ECh. 6.1 - Prob. 9ECh. 6.1 - Prob. 10E
Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.6 - Prob. 1ECh. 6.6 - Prob. 2ECh. 6.6 - Prob. 3ECh. 6.6 - Prob. 4ECh. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.7 - Prob. 1ECh. 6.7 - Prob. 2ECh. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 1ECh. 6.8 - Prob. 2ECh. 6.8 - Prob. 3ECh. 6.8 - Prob. 4ECh. 6.8 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6.8 - Prob. 7ECh. 6.8 - Prob. 8ECh. 6.8 - Prob. 9ECh. 6.8 - Prob. 10ECh. 6.8 - Prob. 11ECh. 6.8 - Prob. 12ECh. 6.8 - Prob. 13ECh. 6.8 - Prob. 14E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- Question No. 2) Explain the importance of fixed point in discrete dynamical Systems with the help of two practical examples.arrow_forwardConsider one application in which either a first order or second order IVP is formed to find a solution in a model problem.arrow_forwardGraph the following Discrete Dynamical Systems. Explain their long-term behavior. Try to find realistic scenarios that these DDS might explain. (Need answer for question number 7.)arrow_forward
- E9.2 Lotka-Volterra Model. The following Lotka-Volterra equations are a Kolmogorov- type model of predator-prey relationships for interacting populations, e.g. hosts and parasites, yeasts and sugars, sharks and surfers. x₁ = P₁x₁ - P2X1X2 X₁ (0) = x10 x₂ = P3x2 + P1P4X1X2 X₂(0) = x20 (9.11) Parameters p₁ to p4 are constant death and birth rates; x₁ is the host population, x₂ is the par- asite population, and the product x₁x2 represents the "getting-together" of the two species. a) Find the equilibrium steady state solutions for these equations, [xeye]¹ = x₂ in terms of the parameters.arrow_forwardThis is System Modeling & Simulation questionarrow_forwardConsider the discrete-time dynamical system modeling the concentration of a chemical in a lung. (Note: round all values at the end of the calculations and use 4 decimal places.) ct+1 = (1 - p)ct + pβ Let V = 2 L, W = 1 L, and β = 6 mmol/L If c0 = 7 mmol/L, iterate to find the following values: c1 = ____mmol/Lc2 = ____mmol/Lc3 = ____mmol/Lc4 = ____mmol/Larrow_forward
- Can you help with question 2 in the picture?arrow_forward2. For each of the following models, say if it is a linear model or not. If it is not a linear model say if it linearisable. If it is give the linearised model. (a) Y₁ = exp (Bo + B₁x₁) + Ei = (b) Y₁ = 3 + exp (Bo + B₁x; + B₂x² + εi) (c) Y₁ = Bo + B₁√√₂ + ₁ or Y₁ = Bo + B₁ cos (xi) + Eiarrow_forwardQuestion 11 Antagonistic interaction is said to be present when the joint effects of two variables is greater than the sum of their individual effects. True Falsearrow_forward
- Consider the equations describing the interactions of robins ? and worms ?arrow_forwardFor the following two-population system, first describe the type of x- and y-populations involved (exponential or logistic) and the nature of their interaction-competition, cooperation, or predation. Then find and characterize the system's critical points (as to type and stability). Determine what nonzero x- and y-populations can coexist. Finally, construct a phase plane portrait that enables you to describe the long-term behavior of the two populations in terms of their initial populations x(0) and y(0). dx dt dy dt=xy-4y = 5xy-10x CICCES Describe the type of x- and y-populations involved. Select the correct choice below. OA. The populations involved are naturally declining populations in competition. OB. The populations involved are naturally growing populations in cooperation. OC. The populations involved are naturally declining populations in cooperation. OD. The populations involved are naturally growing populations in competition.arrow_forwardConsider the two tanks shown in the figure below. Assume that tank A contains 50 gallons of water in which 25 pounds of salt is dissolved. Suppose tank B contains 50 gallons of pure water. Liquid is pumped into and out of the tanks as indicated in the figure; the mixture exchanged between the two tanks and the liquid pumped out of tank B are assumed to be well stirred. We wish to construct a mathematical model that describes the number of pounds x₁(t) and x₂(t) of salt in tanks A and B, respectively, at time t. dx₁1 dt dx1 dt pure water 3 gal/min mixture 4 gal/min This system is described by the system of equations 1 50 2 25 dx2 dt 2 25 2 25*1 1 + -X2 mixture 1 gal/min -X2 B with initial conditions x₁(0) = 25, x₂(0) = 0 (see (3) and the surrounding discussion on mixtures on page 107). What is the system of differential equations if, instead of pure water, a brine solution containing 3 pounds of salt per gallon is pumped into tank A? -2 25*1 + 50x2+6× dx2 2 - (25)*₁- (25)×₂2 - = x2 dt…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY