Concept explainers
Interpretation:
Find the fixed points and classify them, sketch the neighboring trajectories
Concept Introduction:
The parametric curves traced by solutions of a differential equation are known as trajectories.
The geometrical representation of collection of trajectories in a phase plane is called as phase portrait.
The point which satisfies the condition
Closed Orbit corresponds to periodic solution of the system i.e.
If nearby trajectories moving away from the fixed point then the point is said to be saddle point.
If the trajectories swirling around the fixed point then it is a unstable fixed point.
If nearby trajectories moving away from the fixed point then the point is said to be unstable fixed point.
If nearby trajectories moving towards the fixed point then the point is said to be stable fixed point.
To check the stability of fixed point use Jacobian matrix
The point
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
- CHAPTER 1: HISTORY OF COOPERATIVES AND STATE POLICIES Questions for Critical Thinking 1. Discuss the different stages in the history of the Philippine cooperative movement 2. What do you think is meant when it is stated that "one cause for the failure of cooperatives is due to non-patronage by coop members? 3. When the principle of subsidiarity is followed, what are the different manifestations of this principle? Explain. 4. Cooperatives can promote social justice in Philippine society according to the declared policy of the state on cooperatives. Why and how? 5. Why is the recognition of the nature of man neccessary in the success of the cooperative movement? 6. The interest on capital in coops is limited but there is no such limitation in corporation. Explain. 7. How is government intervention proscribed in the declared policies of the government under the present Cooperative Code. 8. Cooperatives grant patronage refund, which is not present in corporations. How do you explain this…arrow_forwardAlready got wrong Chatgpt answer Plz don't use chat gptarrow_forwardT1 T₂ T7 T11 (15) (18) 8 (12) (60) 5 T3 T6 12° 5 5 5 T8 T10 T4 (25) T5 To 1. List all the maximal paths and their weights for the graph above. 2. Give the decreasing-time priority list. 3. Schedule the project using 2 processors and the decreasing-time priority list.arrow_forward
- Horizontal cross-sections of the vector fields F⃗ (x,y,z) and G⃗ (x,y,z) are given in the figure. Each vector field has zero z-component (i.e., all of its vectors are horizontal) and is independent of z (i.e., is the same in every horizontal plane). You may assume that the graphs of these vector fields use the same scale. (a) Are div(F⃗ ) and div(G⃗ ) positive, negative, or zero at the origin? Be sure you can explain your answer. At the origin, div(F⃗ ) is Choose At the origin, div(G⃗ ) is Choose (b) Are F⃗ and G⃗ curl free (irrotational) or not at the origin? Be sure you can explain your answer. At the origin, F⃗ is Choose At the origin, G⃗ isarrow_forwardI need a counter example for this predicate logic question only do f please thanksarrow_forwardLet M be the capped cylindrical surface which is the union of two surfaces, a cylinder given by x² + y² = 9, 0 ≤ z < 1, and a hemispherical cap defined by x² + y² + (z − 1)² = 9, z ≥ 1. For the vector field F = (x²), : (zx + z²y +2y, z³yx + 4x, z²x² compute M (V × F) · dS in any way you like. ſſ₁(▼ × F) · dS = •arrow_forward
- Horizontal cross-sections of the vector fields F⃗ (x,y,z) and G⃗ (x,y,z) are given in the figure. Each vector field has zero z-component (i.e., all of its vectors are horizontal) and is independent of z (i.e., is the same in every horizontal plane). You may assume that the graphs of these vector fields use the same scale. (a) Are div(F⃗ ) and div(G⃗ ) positive, negative, or zero at the origin? Be sure you can explain your answer. At the origin, div(F⃗ ) is At the origin, div(G⃗ ) is (b) Are F⃗ and G⃗ curl free (irrotational) or not at the origin? Be sure you can explain your answer. At the origin, F⃗ is At the origin, G⃗ is (c) Is there a closed surface around the origin such that F⃗ has nonzero flux through it? Be sure you can explain your answer by finding an example or a counterexample. (d) Is there a closed surface around the origin such that G⃗ has nonzero circulation around it? Be sure you can explain your answer by finding an example or a…arrow_forwardSet theoryarrow_forwardNo Chatgpt please will upvotearrow_forward
- 1. Consider the function | ƒ : Z → Z+, f(n) = { 2n 1 2n if n > 0, if n≤0. Show that f is a bijection by showing (from the definitions) that f is injective and surjective.arrow_forward2. Let X and Y be sets and let f: XY. Prove that f is injective for all sets U, for all functions h: UX and k: UX, if foh=fok, then h = k.arrow_forwardBY Euler's method approxmate the solution. y' (t) = [cos (Y(+1)]², -ost≤1, y(o)=0 h=015arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill