EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6.3, Problem 10E
Interpretation Introduction

Interpretation:

To show by linearization the origin is non-isolated fixed point but in fact origin is an isolated fixed point. Classify the stability of the origin and sketch the vector field and nullclines on phase portrait. Generate a phase portrait using computer.

Concept Introduction:

The parametric curves traced by solutions of a differential equation are known as trajectories.

The geometrical representation of collection of trajectories in a phase plane is called as phase portrait.

The point which satisfies the condition f(x*)=0 is known as fixed point, it correspond to steady state of the system (or equilibria of the system).

Closed Orbit corresponds to periodic solution of the system i.e. x(t+T)= x(t) for all t.

If nearby trajectories moving away from the fixed point then the point is said to be saddle point.

If the trajectories keep swirling around the fixed point, then it is a unstable fixed point.

If nearby trajectories are moving away from the fixed point, then the point is said to be unstable fixed point.

If nearby trajectories are moving towards the fixed point, then the point is said to be stable fixed point.

To check the stability of fixed point, use Jacobian matrix

(x˙xx˙yy˙xy˙y)

The point (x*,y*) is said to be a stable fixed point if eigenvalues of Jacobian matrix evaluated at this point having negative real parts and point is said to be unstable if one of its eigenvalue has positive real part. If the both eigenvalues are purely real, then the fixed point is saddle point.

Isolated Fixed Point: If there is no any other fixed point exists in a region closed to interested fixed point, then it is called Isolated Fixed point.

Non-isolated Fixed point: If there is fixed points in a region close to interested fixed point, then it is called Non-isolated fixed point.

Blurred answer
Students have asked these similar questions
CHAPTER 16 REVIEW Make a simple sketch of the vector field F=(x-y)i +x].
The flow lines (or streamlines) of a vector field are the paths followed by a particle whose velocity field is the given vector field. Thus the vectors in a vector field are tangent to the flow lines. (a) Use a sketch of the vector field F(x, y) = xi − yj to draw some flow lines. From your sketches, can you guess the equations of the flow lines?   (b) If parametric equations of a flow line are x = x(t), y = y(t), explain why these functions satisfy the differential equations dx/dt = x and dy/dt = −y.   (c) Solve the differential equations to find an equation of the flow line that passes through the point (x, y) = (−1, −1).
PART A ] (1) Find a complex potential function g(z) of the given vector field F (x,y). (2) find the equation of a streamline of the given vector field F (x,y). F(x,y) =

Chapter 6 Solutions

EBK NONLINEAR DYNAMICS AND CHAOS WITH S

Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.2 - Prob. 1ECh. 6.2 - Prob. 2ECh. 6.3 - Prob. 1ECh. 6.3 - Prob. 2ECh. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Prob. 5ECh. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.4 - Prob. 1ECh. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.5 - Prob. 1ECh. 6.5 - Prob. 2ECh. 6.5 - Prob. 3ECh. 6.5 - Prob. 4ECh. 6.5 - Prob. 5ECh. 6.5 - Prob. 6ECh. 6.5 - Prob. 7ECh. 6.5 - Prob. 8ECh. 6.5 - Prob. 9ECh. 6.5 - Prob. 10ECh. 6.5 - Prob. 11ECh. 6.5 - Prob. 12ECh. 6.5 - Prob. 13ECh. 6.5 - Prob. 14ECh. 6.5 - Prob. 15ECh. 6.5 - Prob. 16ECh. 6.5 - Prob. 17ECh. 6.5 - Prob. 18ECh. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.6 - Prob. 1ECh. 6.6 - Prob. 2ECh. 6.6 - Prob. 3ECh. 6.6 - Prob. 4ECh. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - Prob. 7ECh. 6.6 - Prob. 8ECh. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.7 - Prob. 1ECh. 6.7 - Prob. 2ECh. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Prob. 5ECh. 6.8 - Prob. 1ECh. 6.8 - Prob. 2ECh. 6.8 - Prob. 3ECh. 6.8 - Prob. 4ECh. 6.8 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6.8 - Prob. 7ECh. 6.8 - Prob. 8ECh. 6.8 - Prob. 9ECh. 6.8 - Prob. 10ECh. 6.8 - Prob. 11ECh. 6.8 - Prob. 12ECh. 6.8 - Prob. 13ECh. 6.8 - Prob. 14E
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY