
Concept explainers
(a)
Particle’s velocity at time
(a)

Answer to Problem 59E
The velocity at
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
The velocity v of s is s’ .
Such that
Since
The velocity at
From the graph,
Thus,
The velocity at
(b)
Whether the acceleration of particle at time
(b)

Answer to Problem 59E
The acceleration of particle is positive at
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
The acceleration of s is s”.
Since
Then
According to FTC (Fundamental Theorem of Calculus),
Second derivative:
That means
From the graph,
The slope of f at 3 is positive.
Thus,
Therefore,
The acceleration of particle is positive at
(c)
Particle’s position at time
(c)

Answer to Problem 59E
Particle’s position at 3 seconds is −9 units.
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
The region between
Then
The position at 3 seconds:
Therefore,
Particle’s position at 3 seconds is −9 units.
(d)
Time during which the particle passes through the origin.
(d)

Answer to Problem 59E
Particle is at origin when
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
If the particle is at origin,
Then
Since
That means
We need to find some time t where the area between the f and x − axis is 0.
Note that
In the graph, the triangle between 0 and 3 has same area as the triangle between 3 and 6.
For both the triangle,
Base length is 5
And
Height is 6.
Since one triangle is above the x − axis (positive area) and one triangle is below the x − axis (negative axis), the net area is 0 when we add both the triangles.
Thus,
Therefore,
The particle is at origin when
(e)
Approximate the zero value of acceleration.
(e)

Answer to Problem 59E
The acceleration is zero when
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
If
Then
The acceleration will be zero.
Thus,
We are required to find the second derivative of s .
Since
Then
According to FTC (Fundamental Theorem of Calculus),
We have
Then
Second derivative:
This implies
If
Then
From the graph,
At
The slope of f is 0.
Thus,
We have
Therefore,
Acceleration is zero at 7 seconds.
(f)
Movement of the particle towards and away from the origin.
(f)

Answer to Problem 59E
The particle moves away from the origin in the positive direction on the interval [0, 3] and t > 6.
The particle moves towards the origin in the negative direction on the interval [3, 6].
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
Note that
Such that
Thus,
The particle is at origin at
And
If
The particle is moving towards the right.
If
The particle is moving towards the left.
On the interval [0, 3]:
We have
Thus,
The particle moves away from the origin in the negative direction.
Since it starts at 0 at
On the interval [3, 6]:
We have
And
Thus,
The particle moves towards the origin since it was on the negative coordinate axis and moved to the right.
For
Since
And
Thus,
The particle moves away from the origin in the positive direction since it was on the origin and then moved to the right.
(g)
Side of the origin for the particle at time
(g)

Answer to Problem 59E
The particle lies on positive side of the origin at time
Explanation of Solution
Given information:
Position at time t (sec) of a particle moving along a coordinate axis:
Where,
f is the differentiable function
Since the particle starts at the origin,
Then
Also,
The area below the x -axis between
Thus,
Therefore,
The particle lies on the positive side of the origin at 9 seconds.
Chapter 6 Solutions
Calculus: Graphical, Numerical, Algebraic
Additional Math Textbook Solutions
Elementary Statistics
A First Course in Probability (10th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one. A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture. A B A B at some instant, the piston will be tangent to the circle (a) Express the x and y coordinates of point A as functions of t: x= 2 cos(3πt) and y= 2 sin(3t) (b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds: -cot(3πt) sin(3лt) (c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +411- 4 -2 sin (3лt) (d)…arrow_forward5. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.5.AE.003. y y= ex² 0 Video Example x EXAMPLE 3 (a) Use the Midpoint Rule with n = 10 to approximate the integral कर L'ex² dx. (b) Give an upper bound for the error involved in this approximation. SOLUTION 8+2 1 L'ex² d (a) Since a = 0, b = 1, and n = 10, the Midpoint Rule gives the following. (Round your answer to six decimal places.) dx Ax[f(0.05) + f(0.15) + ... + f(0.85) + f(0.95)] 0.1 [0.0025 +0.0225 + + e0.0625 + 0.1225 e0.3025 + e0.4225 + e0.2025 + + e0.5625 €0.7225 +0.9025] The figure illustrates this approximation. (b) Since f(x) = ex², we have f'(x) = 0 ≤ f'(x) = < 6e. ASK YOUR TEACHER and f'(x) = Also, since 0 ≤ x ≤ 1 we have x² ≤ and so Taking K = 6e, a = 0, b = 1, and n = 10 in the error estimate, we see that an upper bound for the error is as follows. (Round your final answer to five decimal places.) 6e(1)3 e 24( = ≈arrow_forward2. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.5.015. Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n. (Round your answers to six decimal places.) ASK YOUR TEACHER 3 1 3 + dy, n = 6 (a) the Trapezoidal Rule (b) the Midpoint Rule (c) Simpson's Rule Need Help? Read It Watch Itarrow_forward
- This question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one. A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture. B A B at some instant, the piston will be tangent to the circle (a) Express the x and y coordinates of point A as functions of t: x= 2 cos(3πt) and y= 2 sin(3πt) (b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds: -cot (3πt) (c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +41/1 (d) Express the slope of the rod…arrow_forward4. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.5.024. Find the approximations Tη, Mn, and S, to the integral computer algebra system.) ASK YOUR TEACHER PRACTICE ANOTHER 4 39 √ dx for n = 6 and 12. Then compute the corresponding errors ET, EM, and Es. (Round your answers to six decimal places. You may wish to use the sum command on a n Tn Mn Sp 6 12 n ET EM Es 6 12 What observations can you make? In particular, what happens to the errors when n is doubled? As n is doubled, ET and EM are decreased by a factor of about Need Help? Read It ' and Es is decreased by a factor of aboutarrow_forward6. [-/1 Points] DETAILS MY NOTES SESSCALCET2 6.5.001. ASK YOUR TEACHER PRACTICE ANOTHER Let I = 4 f(x) dx, where f is the function whose graph is shown. = √ ² F(x 12 4 y f 1 2 (a) Use the graph to find L2, R2 and M2. 42 = R₂ = M₂ = 1 x 3 4arrow_forward
- practice problem please help!arrow_forwardFind a parameterization for a circle of radius 4 with center (-4,-6,-3) in a plane parallel to the yz plane. Write your parameterization so the y component includes a positive cosine.arrow_forward~ exp(10). A 3. Claim number per policy is modelled by Poisson(A) with A sample x of N = 100 policies presents an average = 4 claims per policy. (i) Compute an a priory estimate of numbers of claims per policy. [2 Marks] (ii) Determine the posterior distribution of A. Give your argument. [5 Marks] (iii) Compute an a posteriori estimate of numbers of claims per policy. [3 Marks]arrow_forward
- 2. The size of a claim is modelled by F(a, λ) with a fixed a a maximum likelihood estimate of A given a sample x with a sample mean x = 11 = 121. Give [5 Marks]arrow_forwardRobbie Bearing Word Problems Angles name: Jocelyn date: 1/18 8K 2. A Delta airplane and an SouthWest airplane take off from an airport at the same time. The bearing from the airport to the Delta plane is 23° and the bearing to the SouthWest plane is 152°. Two hours later the Delta plane is 1,103 miles from the airport and the SouthWest plane is 1,156 miles from the airport. What is the distance between the two planes? What is the bearing from the Delta plane to the SouthWest plane? What is the bearing to the Delta plane from the SouthWest plane? Delta y SW Angles ThreeFourthsMe MATH 2arrow_forwardFind the derivative of the function. m(t) = -4t (6t7 - 1)6arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





