Engineering Mechanics: Dynamics
8th Edition
ISBN: 9781118885840
Author: James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.4, Problem 2P
To determine
Determine the force exerted on the bar by either peg A or B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2 A metal block of mass m = 10 kg is sliding along a frictionless surface with an initial speed
Vo, as indicated below. The block then slides above an electromagnetic brake that applies a
force FEB to the block, opposing its motion. The magnitude of the electromagnetic force
varies quadratically with the distance moved along the brake (x):
10
FEB = kx²,
with k
= 5
N
m²
V₁ = 8 m/s
m = 10 kg
FEB
Frictionless surface
Electromagnetic brake
⇒x
Determine how far the block slides along the electromagnetic brake before stopping, in m.
Q1: Determine the length, angle of contact, and width of a 9.75 mm thick
leather belt required to transmit 15 kW from a motor running at 900 r.p.m. The
diameter of the driving pulley of the motor is 300 mm. The driven pulley runs at
300 r.p.m. and the distance between the centers of two pulleys is 3 meters. The
density of the leather is 1000 kg/m³. The maximum allowable stress in the
leather is 2.5 MPa. The coefficient of friction between the leather and pulley is
0.3. Assume open belt drive.
5. A 15 kW and 1200 r.p.m. motor drives a compressor at 300 r.p.m. through a pair of spur gears having
20° stub teeth. The centre to centre distance between the shafts is 400 mm. The motor pinion is made
of forged steel having an allowable static stress as 210 MPa, while the gear is made of cast steel
having allowable static stress as 140 MPa. Assuming that the drive operates 8 to 10 hours per day
under light shock conditions, find from the standpoint of strength,
1. Module; 2. Face width and 3. Number of teeth and pitch circle diameter of each gear.
Check the gears thus designed from the consideration of wear. The surface endurance limit may be
taken as 700 MPa. [Ans. m = 6 mm; b= 60 mm; Tp=24; T=96; Dp = 144mm; DG = 576 mm]
Chapter 6 Solutions
Engineering Mechanics: Dynamics
Ch. 6.4 - Prob. 1PCh. 6.4 - In Prob. 6/1, if the plate is given a horizontal...Ch. 6.4 - The driver of a pickup truck accelerates from rest...Ch. 6.4 - A passenger car of an overhead monorail system is...Ch. 6.4 - The uniform box of mass m slides down the rough...Ch. 6.4 - The uniform slender bar of mass m and length L is...Ch. 6.4 - Prob. 7PCh. 6.4 - The frame is made from uniform rod which has a...Ch. 6.4 - Prob. 9PCh. 6.4 - Determine the value of P which will cause the...
Ch. 6.4 - The uniform 5-kg bar AB is suspended in a vertical...Ch. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - The 1650-kg car has its mass center at G....Ch. 6.4 - Prob. 18PCh. 6.4 - A cleated conveyor belt transports solid...Ch. 6.4 - The thin hoop of negligible mass and radius r...Ch. 6.4 - Determine the magnitude P and direction θ of the...Ch. 6.4 - The mine skip has a loaded mass of 2000 kg and is...Ch. 6.4 - The block A and attached rod have a combined mass...Ch. 6.4 - The homogeneous rectangular plate weighs 40 lb and...Ch. 6.4 - A jet transport with a landing speed of 200 km/h...Ch. 6.4 - Prob. 26PCh. 6.4 - Prob. 27PCh. 6.4 - The 30,000-lb concrete pipe section is being...Ch. 6.4 - Determine the maximum counterweight W for which...Ch. 6.4 - The 1800-kg rear-wheel-drive car accelerates...Ch. 6.4 - The experimental Formula One race car is traveling...Ch. 6.4 - Two pulleys are fastened together to form an...Ch. 6.4 - The uniform 20-kg slender bar is pivoted at O and...Ch. 6.4 - The figure shows an overhead view of a...Ch. 6.4 - The uniform 100-kg beam is freely hinged about its...Ch. 6.4 - The motor M is used to hoist the 12,000-lb stadium...Ch. 6.4 - Prob. 38PCh. 6.4 - Each of the two drums and connected hubs of 8-in....Ch. 6.4 - Determine the angular acceleration and the force...Ch. 6.4 - The uniform 5-kg portion of a circular hoop is...Ch. 6.4 - The 30-in. slender bar weighs 20 lb and is mounted...Ch. 6.4 - The half ring of mass m and radius r is welded to...Ch. 6.4 - The uniform plate of mass m is released from rest...Ch. 6.4 - The uniform slender bar AB has a mass of 8 kg and...Ch. 6.4 - Prob. 46PCh. 6.4 - Prob. 47PCh. 6.4 - Prob. 48PCh. 6.4 - Prob. 49PCh. 6.4 - Prob. 50PCh. 6.4 - Prob. 51PCh. 6.4 - Prob. 52PCh. 6.4 - Prob. 53PCh. 6.4 - Prob. 54PCh. 6.4 - The solid cylindrical rotor B has a mass of 43 kg...Ch. 6.4 - Prob. 56PCh. 6.4 - Prob. 57PCh. 6.4 - The uniform slender bar is released from rest in...Ch. 6.4 - Prob. 59PCh. 6.4 - Prob. 61PCh. 6.4 - The uniform steel I-beam has a mass of 300 kg and...Ch. 6.4 - The gear train shown operates in a horizontal...Ch. 6.4 - Prob. 64PCh. 6.4 - Prob. 65PCh. 6.4 - Prob. 66PCh. 6.4 - The uniform 72-ft mast weighs 600 lb and is hinged...Ch. 6.4 - The robotic device consists of the stationary...Ch. 6.4 - Prob. 69PCh. 6.4 - Prob. 70PCh. 6.5 - The uniform slender bar rests on a smooth...Ch. 6.5 - The 64.4-lb solid circular disk is initially at...Ch. 6.5 - Prob. 73PCh. 6.5 - Prob. 74PCh. 6.5 - Prob. 75PCh. 6.5 - Prob. 76PCh. 6.5 - Prob. 77PCh. 6.5 - Determine the angular acceleration of each of the...Ch. 6.5 - The solid homogeneous cylinder is released from...Ch. 6.5 - The 30-kg spool of outer radius ro = 450 mm has a...Ch. 6.5 - Repeat Prob. 6/80 for the case where the cable...Ch. 6.5 - The fairing which covers the spacecraft package in...Ch. 6.5 - Prob. 83PCh. 6.5 - Prob. 85PCh. 6.5 - The system of Prob. 6/20 is repeated here. If the...Ch. 6.5 - Prob. 87PCh. 6.5 - Prob. 88PCh. 6.5 - Prob. 89PCh. 6.5 - Prob. 90PCh. 6.5 - Prob. 91PCh. 6.5 - The truck, initially at rest with a solid...Ch. 6.5 - Prob. 93PCh. 6.5 - The uniform rectangular 300-lb plate is held in...Ch. 6.5 - Prob. 96PCh. 6.5 - Prob. 97PCh. 6.5 - Prob. 98PCh. 6.5 - The yo-yo has a mass m and a radius of gyration k...Ch. 6.5 - Prob. 100PCh. 6.5 - Prob. 101PCh. 6.5 - Prob. 102PCh. 6.5 - Prob. 103PCh. 6.5 - Prob. 104PCh. 6.5 - The connecting rod AB of a certain...Ch. 6.5 - Prob. 107PCh. 6.5 - The four-bar mechanism lies in a vertical plane...Ch. 6.5 - The Ferris wheel at an amusement park has an even...Ch. 6.6 - The slender rod of mass m and length l has a...Ch. 6.6 - The log is suspended by the two parallel 5-m...Ch. 6.6 - The assembly is constructed of homogeneous slender...Ch. 6.6 - Prob. 114PCh. 6.6 - Prob. 115PCh. 6.6 - The uniform semicircular bar of radius r = 75 mm...Ch. 6.6 - The homogeneous rectangular crate weighs 250 lb...Ch. 6.6 - The 24-lb disk is rigidly attached to the 7-lb bar...Ch. 6.6 - The two wheels of Prob. 6/78, shown again here,...Ch. 6.6 - The 15-kg slender bar OA is released from rest in...Ch. 6.6 - The light circular hoop of radius r contains a...Ch. 6.6 - Prob. 122PCh. 6.6 - The figure shows an impact tester used in studying...Ch. 6.6 - Prob. 124PCh. 6.6 - Prob. 125PCh. 6.6 - Prob. 126PCh. 6.6 - Prob. 127PCh. 6.6 - The uniform 40-lb bar with attached 12-lb wheels...Ch. 6.6 - Prob. 129PCh. 6.6 - The wheel consists of a 4-kg rim of 250-mm radius...Ch. 6.6 - The uniform slender bar ABC weighs 6 lb and is...Ch. 6.6 - Prob. 133PCh. 6.6 - The system is released from rest when the angle θ...Ch. 6.6 - The uniform 12-lb disk pivots freely about a...Ch. 6.6 - Prob. 137PCh. 6.6 - Prob. 138PCh. 6.6 - Prob. 139PCh. 6.6 - Prob. 140PCh. 6.6 - Prob. 141PCh. 6.6 - Prob. 142PCh. 6.6 - The homogeneous solid semicylinder is released...Ch. 6.6 - A small experimental vehicle has a total mass m of...Ch. 6.6 - Prob. 147PCh. 6.6 - The open square frame is constructed of four...Ch. 6.7 - The load of mass m is supported by the light...Ch. 6.7 - The uniform slender bar of mass m is shown in its...Ch. 6.7 - Prob. 151PCh. 6.7 - Prob. 152PCh. 6.7 - Prob. 153PCh. 6.7 - The load of mass m is given an upward acceleration...Ch. 6.7 - The cargo box of the food-delivery truck for...Ch. 6.7 - The sliding block is given a horizontal...Ch. 6.7 - Prob. 157PCh. 6.7 - Prob. 158PCh. 6.7 - Prob. 159PCh. 6.7 - Prob. 160PCh. 6.7 - The mechanical tachometer measures the rotational...Ch. 6.7 - Prob. 162PCh. 6.7 - Prob. 163PCh. 6.7 - Prob. 164PCh. 6.7 - Prob. 165PCh. 6.7 - Prob. 166PCh. 6.9 - Prob. 167RPCh. 6.9 - Prob. 168RPCh. 6.9 - Prob. 169RPCh. 6.9 - The frame of mass m is welded together from...Ch. 6.9 - Prob. 171RPCh. 6.9 - The cable drum has a mass of 800 kg with radius of...Ch. 6.9 - Prob. 173RPCh. 6.9 - Prob. 174RPCh. 6.9 - Prob. 175RPCh. 6.9 - Prob. 176RPCh. 6.9 - Prob. 177RPCh. 6.9 - The wad of clay of mass m is initially moving with...Ch. 6.9 - Prob. 179RPCh. 6.9 - Prob. 180RPCh. 6.9 - Prob. 181RPCh. 6.9 - Prob. 182RPCh. 6.9 - Prob. 183RPCh. 6.9 - Two small variable-thrust jets are actuated to...Ch. 6.9 - Prob. 185RPCh. 6.9 - Each of the two 300-mm uniform rods A has a mass...Ch. 6.9 - Prob. 187RPCh. 6.9 - The slender bar of mass m and length l is released...Ch. 6.9 - Prob. 189RPCh. 6.9 - Prob. 190RPCh. 6.9 - Prob. 191RPCh. 6.9 - Prob. 192RPCh. 6.9 - Prob. 193RPCh. 6.9 - Prob. 194RPCh. 6.9 - The 165-lb ice skater with arms extended...Ch. 6.9 - Prob. 196RPCh. 6.9 - Prob. 197RPCh. 6.9 - The body of the spacecraft weighs 322 lb on earth...Ch. 6.9 - Prob. 199RPCh. 6.9 - Prob. 200RPCh. 6.9 - Prob. 201RPCh. 6.9 - The uniform cylinder is rolling without slip with...Ch. 6.9 - Prob. 203RPCh. 6.9 - The 30-kg wheel has a radius of gyration about its...Ch. 6.9 - The mass m is traveling with speed v when it...Ch. 6.9 - Prob. 206RPCh. 6.9 - Prob. 207RPCh. 6.9 - Prob. 208RPCh. 6.9 - The nose-wheel assembly is raised by the...Ch. 6.9 - Prob. 210RPCh. 6.9 - Prob. 211RPCh. 6.9 - Prob. 212RPCh. 6.9 - Prob. 213RPCh. 6.9 - Prob. 214RPCh. 6.9 - Prob. 215RPCh. 6.9 - Prob. 216RPCh. 6.9 - Prob. 217RPCh. 6.9 - Prob. 218RPCh. 6.9 - Prob. 219RPCh. 6.9 - Prob. 220RPCh. 6.9 - The slender rod of mass m1 and length L has a...Ch. 6.9 - Prob. 222RPCh. 6.9 - Prob. 226RPCh. 6.9 - Prob. 228RPCh. 6.9 - Prob. 229RPCh. 6.9 - Prob. 230RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 4. G A micarta pinion rotating at 1200 r.p.m. is to transmit 1 kW to a cast iron gear at a speed of 192 r.p.m. Assuming a starting overload of 20% and using 20° full depth involute teeth, determine the module, number of teeth on the pinion and gear and face width. Take allowable static strength for micarta as 40 MPa and for cast iron as 53 MPa. Check the pair in wear.arrow_forwardI want to solve these choicesarrow_forward2. A spur gear made of bronze drives a mid steel pinion with angular velocity ratio of 32: 1. The pressure angle is 14½. It transmits 5 kW at 1800 r.p.m. of pinion. Considering only strength, design the smallest diameter gears and find also necessary face width. The number of teeth should not be less than 15 teeth on either gear. The elastic strength of bronze may be taken as 84 MPa and of steel as 105 MPa. Lewis factor for 14½½ pressure angle may be taken 0.684 0.124 y = No. of teeth as [Ans. m 3 mm; b= 35 mm; Dp = 48 mm; D= 168 mm]arrow_forward
- Q2. Determine the safety factors for the bracket rod shown in Figure 2 based on both the distortion-energy theory and the maximum shear theory and compare them. Given: The material is 2024-T4 aluminum with a yield strength of 47 000 psi. The rod length /= 6 in. and arm a = 8 in. The rod outside diameter od 1.5 in., id = 1 in, h=2 in., t=0.5 in., Load F= 1000 lb. Assumptions: The load is static and the assembly is at room temperature. Consider shear due to transverse loading as well as other stresses. (Note: solve in SI units) wall tube Figure 2 armarrow_forwardThe question has been set up with all the cuts needed to accurately derive expressions for V(x) and M(x). Using the cuts free body diagrams set up below, derive expressions for V(x) and M(x). If you use the method of cuts then validate your answers using calculus or vice versa.arrow_forwardIt is required to treat 130 kmol/hr of chloroform-air feed gas mixture that contains 12% chloroform. It is required to remove 93% of chloroform using 150 kmol/hr of solvent that contains 99.6% water and 0.4% chloroform. The cross sectional area of the column is 0.8 m². Calculate the column height using the following data; kx'.a = 1.35 (kmol/m³.s (Ax)), and ky'.a = 0.06 (kmol/m³.s (Ay)), kx/ky = 1.35, and the equilibrium data are: X 0 0.0133 0.033 y 0 0.01 0.0266 0.049 0.064 0.0747 0.0933 0.1053 0.0433 0.06 0.0733 0.111 0.1 0.12 0.14arrow_forward
- ४ B: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) [T1] T₂ T3 [T] 1 = [0] 0 0 d dx dx) (ka)+4(ka) = dy -20xy, k = 1 + 0.3 T ge L=3cm, 4x= Ay B.Cs.: at x=0=LT=0°C at y=0-L T=10°C Fig. (2)arrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardFor the beam show below, draw A.F.D, S.F.D, B.M.D 6 kN/m 1 M B. 3 M Marrow_forward
- 1. Two long rods of the same diameter-one made of brass (k=85w/m.k) and the other made of copper (k=375 w/m.k) have one of their ends inserted into a furnace (as shown in the following figure). Both rods are exposed to the same environment. At a distance of 105 mm from the furnace, the temperature of the brass rod is 120°C. At what distance from the furnace will the same temperature be reached in the copper rod? Furnace 105 mm T₁ Brass rod ⑪ h Too- x2- Ti Copper rodarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forwardمشر on ۲/۱ Two rods (fins) having same dimensions, one made of brass(k=85 m K) and the other of copper (k = 375 W/m K), having one of their ends inserted into a furnace. At a section 10.5 cm a way from the furnace, the temperature brass rod 120°C. Find the distance at which the same temperature would be reached in the copper rod ? both ends are exposed to the same environment. 22.05 ofthearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY