
Engineering Mechanics: Dynamics
8th Edition
ISBN: 9781118885840
Author: James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.9, Problem 175RP
To determine
The final linear of the bar with the combined particle after impact.
The angular velocity of the bar with the combined particle after impact.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463
rho_l= 610.2 kf/m^3
liquid viscosity= 1.519*10^-4 kg/ ms
kinematic viscosity= 2.489*10^-7 m^2/s
Cpl= 4745 J/kg C
kl=0.4927 W/m Ca)Calculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) b) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. c) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…
Using the three moment theorem, how was A2 determined?
Draw the kinematic diagram of the following mechanism
Chapter 6 Solutions
Engineering Mechanics: Dynamics
Ch. 6.4 - Prob. 1PCh. 6.4 - In Prob. 6/1, if the plate is given a horizontal...Ch. 6.4 - The driver of a pickup truck accelerates from rest...Ch. 6.4 - A passenger car of an overhead monorail system is...Ch. 6.4 - The uniform box of mass m slides down the rough...Ch. 6.4 - The uniform slender bar of mass m and length L is...Ch. 6.4 - Prob. 7PCh. 6.4 - The frame is made from uniform rod which has a...Ch. 6.4 - Prob. 9PCh. 6.4 - Determine the value of P which will cause the...
Ch. 6.4 - The uniform 5-kg bar AB is suspended in a vertical...Ch. 6.4 - Prob. 12PCh. 6.4 - Prob. 13PCh. 6.4 - Prob. 14PCh. 6.4 - Prob. 15PCh. 6.4 - Prob. 16PCh. 6.4 - The 1650-kg car has its mass center at G....Ch. 6.4 - Prob. 18PCh. 6.4 - A cleated conveyor belt transports solid...Ch. 6.4 - The thin hoop of negligible mass and radius r...Ch. 6.4 - Determine the magnitude P and direction θ of the...Ch. 6.4 - The mine skip has a loaded mass of 2000 kg and is...Ch. 6.4 - The block A and attached rod have a combined mass...Ch. 6.4 - The homogeneous rectangular plate weighs 40 lb and...Ch. 6.4 - A jet transport with a landing speed of 200 km/h...Ch. 6.4 - Prob. 26PCh. 6.4 - Prob. 27PCh. 6.4 - The 30,000-lb concrete pipe section is being...Ch. 6.4 - Determine the maximum counterweight W for which...Ch. 6.4 - The 1800-kg rear-wheel-drive car accelerates...Ch. 6.4 - The experimental Formula One race car is traveling...Ch. 6.4 - Two pulleys are fastened together to form an...Ch. 6.4 - The uniform 20-kg slender bar is pivoted at O and...Ch. 6.4 - The figure shows an overhead view of a...Ch. 6.4 - The uniform 100-kg beam is freely hinged about its...Ch. 6.4 - The motor M is used to hoist the 12,000-lb stadium...Ch. 6.4 - Prob. 38PCh. 6.4 - Each of the two drums and connected hubs of 8-in....Ch. 6.4 - Determine the angular acceleration and the force...Ch. 6.4 - The uniform 5-kg portion of a circular hoop is...Ch. 6.4 - The 30-in. slender bar weighs 20 lb and is mounted...Ch. 6.4 - The half ring of mass m and radius r is welded to...Ch. 6.4 - The uniform plate of mass m is released from rest...Ch. 6.4 - The uniform slender bar AB has a mass of 8 kg and...Ch. 6.4 - Prob. 46PCh. 6.4 - Prob. 47PCh. 6.4 - Prob. 48PCh. 6.4 - Prob. 49PCh. 6.4 - Prob. 50PCh. 6.4 - Prob. 51PCh. 6.4 - Prob. 52PCh. 6.4 - Prob. 53PCh. 6.4 - Prob. 54PCh. 6.4 - The solid cylindrical rotor B has a mass of 43 kg...Ch. 6.4 - Prob. 56PCh. 6.4 - Prob. 57PCh. 6.4 - The uniform slender bar is released from rest in...Ch. 6.4 - Prob. 59PCh. 6.4 - Prob. 61PCh. 6.4 - The uniform steel I-beam has a mass of 300 kg and...Ch. 6.4 - The gear train shown operates in a horizontal...Ch. 6.4 - Prob. 64PCh. 6.4 - Prob. 65PCh. 6.4 - Prob. 66PCh. 6.4 - The uniform 72-ft mast weighs 600 lb and is hinged...Ch. 6.4 - The robotic device consists of the stationary...Ch. 6.4 - Prob. 69PCh. 6.4 - Prob. 70PCh. 6.5 - The uniform slender bar rests on a smooth...Ch. 6.5 - The 64.4-lb solid circular disk is initially at...Ch. 6.5 - Prob. 73PCh. 6.5 - Prob. 74PCh. 6.5 - Prob. 75PCh. 6.5 - Prob. 76PCh. 6.5 - Prob. 77PCh. 6.5 - Determine the angular acceleration of each of the...Ch. 6.5 - The solid homogeneous cylinder is released from...Ch. 6.5 - The 30-kg spool of outer radius ro = 450 mm has a...Ch. 6.5 - Repeat Prob. 6/80 for the case where the cable...Ch. 6.5 - The fairing which covers the spacecraft package in...Ch. 6.5 - Prob. 83PCh. 6.5 - Prob. 85PCh. 6.5 - The system of Prob. 6/20 is repeated here. If the...Ch. 6.5 - Prob. 87PCh. 6.5 - Prob. 88PCh. 6.5 - Prob. 89PCh. 6.5 - Prob. 90PCh. 6.5 - Prob. 91PCh. 6.5 - The truck, initially at rest with a solid...Ch. 6.5 - Prob. 93PCh. 6.5 - The uniform rectangular 300-lb plate is held in...Ch. 6.5 - Prob. 96PCh. 6.5 - Prob. 97PCh. 6.5 - Prob. 98PCh. 6.5 - The yo-yo has a mass m and a radius of gyration k...Ch. 6.5 - Prob. 100PCh. 6.5 - Prob. 101PCh. 6.5 - Prob. 102PCh. 6.5 - Prob. 103PCh. 6.5 - Prob. 104PCh. 6.5 - The connecting rod AB of a certain...Ch. 6.5 - Prob. 107PCh. 6.5 - The four-bar mechanism lies in a vertical plane...Ch. 6.5 - The Ferris wheel at an amusement park has an even...Ch. 6.6 - The slender rod of mass m and length l has a...Ch. 6.6 - The log is suspended by the two parallel 5-m...Ch. 6.6 - The assembly is constructed of homogeneous slender...Ch. 6.6 - Prob. 114PCh. 6.6 - Prob. 115PCh. 6.6 - The uniform semicircular bar of radius r = 75 mm...Ch. 6.6 - The homogeneous rectangular crate weighs 250 lb...Ch. 6.6 - The 24-lb disk is rigidly attached to the 7-lb bar...Ch. 6.6 - The two wheels of Prob. 6/78, shown again here,...Ch. 6.6 - The 15-kg slender bar OA is released from rest in...Ch. 6.6 - The light circular hoop of radius r contains a...Ch. 6.6 - Prob. 122PCh. 6.6 - The figure shows an impact tester used in studying...Ch. 6.6 - Prob. 124PCh. 6.6 - Prob. 125PCh. 6.6 - Prob. 126PCh. 6.6 - Prob. 127PCh. 6.6 - The uniform 40-lb bar with attached 12-lb wheels...Ch. 6.6 - Prob. 129PCh. 6.6 - The wheel consists of a 4-kg rim of 250-mm radius...Ch. 6.6 - The uniform slender bar ABC weighs 6 lb and is...Ch. 6.6 - Prob. 133PCh. 6.6 - The system is released from rest when the angle θ...Ch. 6.6 - The uniform 12-lb disk pivots freely about a...Ch. 6.6 - Prob. 137PCh. 6.6 - Prob. 138PCh. 6.6 - Prob. 139PCh. 6.6 - Prob. 140PCh. 6.6 - Prob. 141PCh. 6.6 - Prob. 142PCh. 6.6 - The homogeneous solid semicylinder is released...Ch. 6.6 - A small experimental vehicle has a total mass m of...Ch. 6.6 - Prob. 147PCh. 6.6 - The open square frame is constructed of four...Ch. 6.7 - The load of mass m is supported by the light...Ch. 6.7 - The uniform slender bar of mass m is shown in its...Ch. 6.7 - Prob. 151PCh. 6.7 - Prob. 152PCh. 6.7 - Prob. 153PCh. 6.7 - The load of mass m is given an upward acceleration...Ch. 6.7 - The cargo box of the food-delivery truck for...Ch. 6.7 - The sliding block is given a horizontal...Ch. 6.7 - Prob. 157PCh. 6.7 - Prob. 158PCh. 6.7 - Prob. 159PCh. 6.7 - Prob. 160PCh. 6.7 - The mechanical tachometer measures the rotational...Ch. 6.7 - Prob. 162PCh. 6.7 - Prob. 163PCh. 6.7 - Prob. 164PCh. 6.7 - Prob. 165PCh. 6.7 - Prob. 166PCh. 6.9 - Prob. 167RPCh. 6.9 - Prob. 168RPCh. 6.9 - Prob. 169RPCh. 6.9 - The frame of mass m is welded together from...Ch. 6.9 - Prob. 171RPCh. 6.9 - The cable drum has a mass of 800 kg with radius of...Ch. 6.9 - Prob. 173RPCh. 6.9 - Prob. 174RPCh. 6.9 - Prob. 175RPCh. 6.9 - Prob. 176RPCh. 6.9 - Prob. 177RPCh. 6.9 - The wad of clay of mass m is initially moving with...Ch. 6.9 - Prob. 179RPCh. 6.9 - Prob. 180RPCh. 6.9 - Prob. 181RPCh. 6.9 - Prob. 182RPCh. 6.9 - Prob. 183RPCh. 6.9 - Two small variable-thrust jets are actuated to...Ch. 6.9 - Prob. 185RPCh. 6.9 - Each of the two 300-mm uniform rods A has a mass...Ch. 6.9 - Prob. 187RPCh. 6.9 - The slender bar of mass m and length l is released...Ch. 6.9 - Prob. 189RPCh. 6.9 - Prob. 190RPCh. 6.9 - Prob. 191RPCh. 6.9 - Prob. 192RPCh. 6.9 - Prob. 193RPCh. 6.9 - Prob. 194RPCh. 6.9 - The 165-lb ice skater with arms extended...Ch. 6.9 - Prob. 196RPCh. 6.9 - Prob. 197RPCh. 6.9 - The body of the spacecraft weighs 322 lb on earth...Ch. 6.9 - Prob. 199RPCh. 6.9 - Prob. 200RPCh. 6.9 - Prob. 201RPCh. 6.9 - The uniform cylinder is rolling without slip with...Ch. 6.9 - Prob. 203RPCh. 6.9 - The 30-kg wheel has a radius of gyration about its...Ch. 6.9 - The mass m is traveling with speed v when it...Ch. 6.9 - Prob. 206RPCh. 6.9 - Prob. 207RPCh. 6.9 - Prob. 208RPCh. 6.9 - The nose-wheel assembly is raised by the...Ch. 6.9 - Prob. 210RPCh. 6.9 - Prob. 211RPCh. 6.9 - Prob. 212RPCh. 6.9 - Prob. 213RPCh. 6.9 - Prob. 214RPCh. 6.9 - Prob. 215RPCh. 6.9 - Prob. 216RPCh. 6.9 - Prob. 217RPCh. 6.9 - Prob. 218RPCh. 6.9 - Prob. 219RPCh. 6.9 - Prob. 220RPCh. 6.9 - The slender rod of mass m1 and length L has a...Ch. 6.9 - Prob. 222RPCh. 6.9 - Prob. 226RPCh. 6.9 - Prob. 228RPCh. 6.9 - Prob. 229RPCh. 6.9 - Prob. 230RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ##### For the attached electropneumatic circuit, design where and how a counter should be attached so that a part is counted for each cyclearrow_forwardIf you have a spring mass damper system, given by m*x_double_dot + c*x_dot + kx = 0 where m, c, k (all positive scalars) are the mass, damper coefficient, and spring coefficient, respectively. x ∈ R represents the displacement of the mass. Let us then discuss the stability of the system by using Lyapunov stability theorem. Consider the system energy as a candidate Lyapunov function shown in the image. Discuss the positive definiteness of V (x, x_dot). Derive the Lyapunov rate of this system (i.e., V_dot ), and discuss the stability property of thesystem based on the information we gain from ̇V_dot .arrow_forwardIn class, two approaches—Theorems 1 and 2 below—are discussed to prove asymptotic stability of asystem when ̇V = 0. Show the asymptotic stability of the system given in Eq. (1) by applying Theorem 1. Show the asymptotic stability of the system given in Eq. (1) by applying Theorem 2.arrow_forward
- Homework#5arrow_forwardIf you have a spring mass damper system, given by m*x_double_dot + c*x_dot + kx = 0 where m, c, k (all positive scalars) are the mass, damper coefficient, and spring coefficient, respectively. x ∈ R represents the displacement of the mass. Using linear stability analysis, show that the system is asymptotically stable. Hint: stability of a linear system z_dot = Az is characterized by the eigenvalues of A.arrow_forwardWhat would the electropneumatic diagram of a circuit with the sequence a+b+c+(a-b-c-) look like?arrow_forward### What would the electropneumatic diagram of a circuit with the sequence a+b+c+(a-b-c-) look like, with a counter, in the fluidsim?arrow_forwardYou are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m CCalculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) a) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. b) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…arrow_forwardHomework#5arrow_forwardQuestion 1: Beam Analysis Two beams (ABC and CD) are connected using a pin immediately to the left of Point C. The pin acts as a moment release, i.e. no moments are transferred through this pinned connection. Shear forces can be transferred through the pinned connection. Beam ABC has a pinned support at point A and a roller support at Point C. Beam CD has a roller support at Point D. A concentrated load, P, is applied to the mid span of beam CD, and acts at an angle as shown below. Two concentrated moments, MB and Mc act in the directions shown at Point B and Point C respectively. The magnitude of these moments is PL. Moment Release A B с ° MB = PL Mc= = PL -L/2- -L/2- → P D Figure 1: Two beam arrangement for question 1. To analyse this structure, you will: a) Construct the free body diagrams for the structure shown above. When constructing your FBD's you must make section cuts at point B and C. You can represent the structure as three separate beams. Following this, construct the…arrow_forwardA differential element on the bracket is subjected to plane strain that has the following components:, Ɛx = 300 × 10-6, Ɛy = 150 × 10-6, Ɛxy = -750 x 10-6. Use the strain-transformation equations and determine the normal strain Ɛx in the X/ direction on an element oriented at an angle of 0 = 40°. Note, a positive angle, 0, is counter clockwise. x Enter your answer in micro strain to a precision of two decimal places. eg. if your answer is 300.15X106, please enter 300.15.arrow_forwardIf the 50 mm diameter shaft is made from brittle material having an ultimate strength of σult=595 MPa for both tension and compression, determine the factor of safety of the shaft against rupture. The applied force, F, is 140 kN. The applied torque T, is 5.0 kN⚫m. Enter your answer to a precision of two decimal places. T Farrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License