HEART OF MATHEMATICS
4th Edition
ISBN: 9781119760061
Author: Burger
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.3, Problem 31MS
Personal perspectives. Write a short essay describing the most interesting or surprising discovery you made in exploring the material in this section. If any material seemed puzzling or even unbelievable, address that as well. Explain why you chose the topics you did. Finally, comment on the aesthetics of the mathematics and ideas in this section.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No Chatgpt please
Give detailed answer
Already got wrong Chatgpt answer Plz don't use chat gpt
Will definitely upvote
No Chatgpt please will upvote
Already got wrong Chatgpt answer
Chapter 6 Solutions
HEART OF MATHEMATICS
Ch. 6.1 - Map maker, map maker make me a graph. Represent...Ch. 6.1 - Unabridged list. Represent cach landmass from...Ch. 6.1 - Will the walk work? Does your graph from...Ch. 6.1 - Walk around the house. Is it possibel to traverse...Ch. 6.1 - Walk the line. Does this graph above have an Euler...Ch. 6.1 - Walkabout. Does this graph have an Euler circuit?...Ch. 6.1 - Linking the loops. In this map, the following...Ch. 6.1 - Scenic drive. (S) Here is a map of Rockystone...Ch. 6.1 - Under-edged. (H) Does this graph have an Euler...Ch. 6.1 - No man is an island. The country of Pelago...
Ch. 6.1 - Path-o-rama. For each graph below, determine if...Ch. 6.1 - Walk around the block. Create a graph of the...Ch. 6.1 - Walking the dogs. Your dogs, Abbey and Bear, love...Ch. 6.1 - Delivery query. The next time you see a postal...Ch. 6.1 - Snow job. (ExH) Shown here is a map of the tiny...Ch. 6.1 - Special delivery. (ExH) Julia is the letter...Ch. 6.1 - Draw this old house. Suppose you wanted to trace...Ch. 6.1 - Path of no return. Consider this map showing a...Ch. 6.1 - Without a trace. Is it possibel to trace out...Ch. 6.1 - New Euler. In the three previous Mindscapes, you...Ch. 6.1 - New edge—new circuit. Look at the graph for...Ch. 6.1 - New edge—new path. Review your work for...Ch. 6.1 - Path to proof. Suppose you have a connected graph...Ch. 6.1 - No Euler no how. Look at graph (a) for Mindscape...Ch. 6.1 - Degree day. (S) For cach graph below, determine...Ch. 6.1 - degrees of proof. Review your work for Mindscape...Ch. 6.1 - Degrees in sequence. Can you draw a graph that has...Ch. 6.1 - Even Steven. Review your work in Mindscape 28 to...Ch. 6.1 - Little League lesson. (H) You are in charge of...Ch. 6.1 - With a group of folks. In a small group, discuss...Ch. 6.1 - Power beyond the mathematics. Provide several...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.2 - What a character! What expression gives the Euler...Ch. 6.2 - Count, then verify. What are the values of V, E,...Ch. 6.2 - Sneeze, then verify. Look at an unopened tissue...Ch. 6.2 - Blow, then verify. Inflate a ballon and use a...Ch. 6.2 - Add one. Find the values V, E, and F for the graph...Ch. 6.2 - Bowling. What is the Euler Characteristic of the...Ch. 6.2 - Making change. We begin with the graph pictured at...Ch. 6.2 - Making a point. Take a connected graph and add a...Ch. 6.2 - On the edge (H). Is it possible to add an edge to...Ch. 6.2 - Soap films. Consider the following sequence of...Ch. 6.2 - Dualing. What is the relationship between the...Ch. 6.2 - Prob. 12MSCh. 6.2 - Lots of separation. Suppose we are told that a...Ch. 6.2 - Prob. 14MSCh. 6.2 - Psychic readings. Someone is thinking of a...Ch. 6.2 - Prob. 16MSCh. 6.2 - Prob. 17MSCh. 6.2 - Circular reasoning. Create a connected graph as...Ch. 6.2 - Prob. 19MSCh. 6.2 - More circles. Consider the sphere described in...Ch. 6.2 - In the rough (S). Count the number of facets,...Ch. 6.2 - Cutting corners (H). The following collection of...Ch. 6.2 - Stellar. The following collection of pictures...Ch. 6.2 - A torus graph (ExH). The Euler Characteristic...Ch. 6.2 - Regular unfolding. Each graph below represents...Ch. 6.2 - A tale of two graphs. Suppose we draw a graph that...Ch. 6.2 - Two graph conjectures (S). Can you conjecture a...Ch. 6.2 - Lots of graphs conjecture. Can you conjecture a...Ch. 6.2 - Torus count. Three hollowed, triangular prisms...Ch. 6.2 - Torus two count (H). Carefully count the number of...Ch. 6.2 - Torus many count. Using the preceding calculations...Ch. 6.2 - Prob. 32MSCh. 6.2 - Tell the truth. Someone said that she made a...Ch. 6.2 - No sphere. Suppose we have a sphere built out of...Ch. 6.2 - Soccer ball. A soccer ball is made of pentagons...Ch. 6.2 - Klein bottle. Using the diagram here for building...Ch. 6.2 - Not many neighbors. Show that every map has at...Ch. 6.2 - Infinite edges. Suppose we consider a conn ected...Ch. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.2 - Prob. 44MSCh. 6.2 - Prob. 45MSCh. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.3 - Dont be cross. Here is a drawing of a graph with...Ch. 6.3 - De Plane! De Plane! (S) Is the graph given in...Ch. 6.3 - Countdown (H). For the graph drawing shown, count...Ch. 6.3 - Prob. 4MSCh. 6.3 - Criss-Cross. Is it possible to redraw the graph...Ch. 6.3 - Dont cross in the edge. Each of the graphs drawn...Ch. 6.3 - Hot crossed buns. Each of the graphs drawn below...Ch. 6.3 - Prob. 8MSCh. 6.3 - Spider on a mirror. Is it possible to redraw the...Ch. 6.3 - One more vertex. The graph here is drawn to show...Ch. 6.3 - Yet one more vertex (H). The graph shown is drawn...Ch. 6.3 - Familiar freckles. Is it possible to redraw the...Ch. 6.3 - Remind you of anyone you know? Is it possible to...Ch. 6.3 - Final countdown. For this graph drawing, count the...Ch. 6.3 - Euler check-up. Use your answer to the previous...Ch. 6.3 - Euler second opinion. For the graph drawing shown...Ch. 6.3 - Prob. 17MSCh. 6.3 - Prob. 18MSCh. 6.3 - A colorful museum. This figure shows the floor...Ch. 6.3 - Limit of 5. Start drawing a planar graph. Keep...Ch. 6.3 - Starring the hexagon. Is it possible to redraw...Ch. 6.3 - Prob. 22MSCh. 6.3 - Prob. 23MSCh. 6.3 - Getting greedy. (H) Suppose you are asked to color...Ch. 6.3 - Stingy rather than greedy. By coloring the...Ch. 6.3 - Getting more colorful. Graphs dont have to be...Ch. 6.3 - Prob. 27MSCh. 6.3 - Prob. 28MSCh. 6.3 - Chromatically applied. There are eight radio...Ch. 6.3 - Prob. 30MSCh. 6.3 - Personal perspectives. Write a short essay...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Prob. 37MSCh. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.4 - Up close and personal. Create a graph to model...Ch. 6.4 - Network lookout. Find an examle of a network...Ch. 6.4 - Prob. 3MSCh. 6.4 - Hamiltonian holiday (S). You are interning for a...Ch. 6.4 - Home style. Create a graph to model the rooms in...Ch. 6.4 - Six degrees or less. Suppose this graph is a model...Ch. 6.4 - Degrees of you. Find ten willing friends or...Ch. 6.4 - Campus shortcut. Find a map of your campus and...Ch. 6.4 - Arborist lesson. Which of the graphs below are...Ch. 6.4 - Prob. 10MSCh. 6.4 - Prob. 11MSCh. 6.4 - Prob. 12MSCh. 6.4 - Prob. 13MSCh. 6.4 - Prob. 14MSCh. 6.4 - Prob. 15MSCh. 6.4 - Hamilton Study. Look at the graph you drew to...Ch. 6.4 - Business trip redux. Look back in the section and...Ch. 6.4 - Handling Hamiltons. For each graph below, find a...Ch. 6.4 - Road trip. You are checking out gradua te programs...Ch. 6.4 - Back to Hatties trip. Look back in this section...Ch. 6.4 - Solve the Icosian Game. Find a Hamiltonian circuit...Ch. 6.4 - Hunt for Hamilton (S). A large island country has...Ch. 6.4 - Has no Hamilton. Give some characteristics that...Ch. 6.4 - Cubing Hamilton (ExH). Can you find a Hamihonian...Ch. 6.4 - Hamiltonian path. A Hamiltonian path is a path in...Ch. 6.4 - Sorry, no path. Give some characteristics that...Ch. 6.4 - Prob. 27MSCh. 6.4 - Prob. 28MSCh. 6.4 - Prob. 29MSCh. 6.4 - Prob. 30MSCh. 6.4 - Edge count. Look at all the trees you drew in the...Ch. 6.4 - Personal perspecthes. Write a short essay...Ch. 6.4 - Prob. 33MSCh. 6.4 - Prob. 34MSCh. 6.4 - Dollars and cents. Your spanning tree has three...Ch. 6.4 - Adding up. Your spanning tree has four edges with...Ch. 6.4 - Prob. 38MSCh. 6.4 - Vertex search (H). Your graph has a Hamiltonian...Ch. 6.4 - Binary gossip tree. You told a secret to two of...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Evaluating limits Evaluate the following limits. 26. limt2(t2+5t+7)
Calculus: Early Transcendentals (2nd Edition)
CHECK POINT 1 Find a counterexample to show that the statement The product of two two-digit numbers is a three-...
Thinking Mathematically (6th Edition)
Probability from a Sample Space. In Exercises 33-36, use the given sample space or construct the required sampl...
Elementary Statistics (13th Edition)
3. For the same sample statistics, which level of confidence would produce the widest confidence interval? Expl...
Elementary Statistics: Picturing the World (7th Edition)
A Bloomberg Businessweek subscriber study asked, In the past 12 months, when travelling for business, what type...
STATISTICS F/BUSINESS+ECONOMICS-TEXT
In how many ways can 3 novels. 2 mathematics books, and 1 chemistry book be arranged on a bookshelf if
a. the ...
A First Course in Probability (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Consider the initial value problem mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = = 2 kilograms, c = 8 kilograms per second, k 80 Newtons per meter, and F(t) = 20e¯* = Newtons. Solve the initial value problem. x(t) = = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 t→∞ ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ x sp(t) = help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem mx" + cx' + kx = F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 100 cos(8t) Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 t→∞ ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t)≈ x sp(t) = help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem mx" cx' + kx F(t), x(0) = 0, x'(0) = 0 modeling the motion of a damped mass-spring system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 80 Newtons per meter, and F(t) = 20 sin(6t) kilograms, c = 8 kilograms per second, k = Newtons. Solve the initial value problem. x(t) = help (formulas) Determine the long-term behavior of the system (steady periodic solution). Is lim x(t) = 0 0047 ? If it is, enter zero. If not, enter a function that approximates x(t) for very large positive values of t. For very large positive values of t, x(t) ≈ x sp(t) = ☐ help (formulas) Book: Section 2.6 of Notes on Diffy Qsarrow_forward
- Consider the differential equation y' = - 4xy with initial condition y(0) = 1.9. Recall that Runge-Kutta method has the following formula for computing the next step, where h is the step size: f(xi, Yi) = fx i + (++) k1 = h k2 2 ¯‚ Yi + k₁ h h k3 = fxi 2 `, Yi + k₂· 2 k4 = f(xi+h, yikзh) i+1=i+h k12k22k3 + k4 Yi+1 Yi + h 6 Using Runge-Kutta step size h = 0.4: Estimate y(0.4) ≈ help (numbers) Estimate y(0.8) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forwardDetermine which differential equation corresponds to each phase diagram. You should be able to state briefly how you know your choices are correct. х x 4 4 4 4 3 3 3 3 2 2 2 2 dx ? ✰ dt = 1. = x² - 3x 1 1 1 1 ? ◇ 2. dx dt = x(x − 2) - 0 0 0 0 ? ◇ 3. dx dt = x(2 − x)² -1 -1 -1 -1 Q -2 -2 -2 dx ? ◇ 4. ༤་ dt = = 3x - x² -3 -3 -3 -3 x³- 4x = x²|x − 2| ? ◇ 5. ம் dx dt བི་ dx ? ◇ 6. dt ཝེ་ dx ? 7. dt ཝེ་ dx ? ◇ 8. ཝེ་ dt -4 -4 -4 -4 A B 0 D = = 2x = x² * x * * x * K 4 4 4 4 = 4x - x³ 3 3 3 • 3 Book: Section 1.6 of Notes on Diffy Qs dit for this problem 2 2 2 2 1 1 1 1 0 0 0 8 -1 -1 -1 -1 N 心 -2 -2 -3 -3 -3 -4 -4 -4 -4 E FL G Harrow_forwardDear expert Chatgpt gives wrong answer Plz don't use chat gptarrow_forward
- An improved method that is similar to Euler's method is what is usually called the Improved Euler's method. It works like this: Consider an equation y' = f(x, y). From (xn, Yn), our approximation to the solution of the differential equation at the n-th stage, we find the next stage by computing the x-step Xn+1 = xn +h, and then k1, the slope at (xn, Yn). The predicted new value of the solution . İs Zn+1 = Yn + h · k₁. Then we find the slope at the predicted new point k₁ = f(xn+1, Zn+1) and get the corrected point by averaging slopes h Yn+1 = = Yn + 1½ ½ (k1 + k₂). Suppose that we use the Improved Euler's method to approximate the solution to the differential equation dy dx = x - 0.5y, y(0.5) = 9. We let xo = 0.5 and yo 9 and pick a step size h = 0.25. Complete the following table: n xn Yn k1 Zn+1 k₂ 0 0.59-48 -3.25 ♡ <+ help (numbers) The exact solution can also be found for the linear equation. Write the answer as a function of x. y(x) = = help (formulas) Thus the actual value of the…arrow_forwardAlready got wrong Chatgpt answer If ur also Chatgpt user leave itarrow_forwardThe graph of the function f(x) is 1,0 (the horizontal axis is x.) Consider the differential equation x' = f(x). List the constant (or equilibrium) solutions to this differential equation in increasing order and indicate whether or not these equalibria are stable, semi-stable (stable from one side, unstable from the other), or unstable. x = help (numbers) x = help (numbers) x = help (numbers) x = help (numbers) Book: Section 1.6 of Notes on Diffy Qsarrow_forward
- = A 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 centimeters. At time t = 0, the resulting mass-spring system is disturbed from its rest state by the force F(t) = 60 cos(8t). The force F(t) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. Determine the spring constant k. k = Newtons/meter help (numbers) Hint is to use earth gravity of 9.8 meters per second squared, and note that Newton is kg meter per second squared. Formulate the initial value problem for x(t), where x(t) is the displacement of the object from its equilibrium rest state, measured positive in the downward direction. Give your answer in terms of x, x',x",t. Differential equation: | help (equations) Initial conditions: x (0) = and '(0) = help (numbers) Solve the initial value problem for x(t). x(t) = ☐ help (formulas) Plot the solution and determine the maximum displacement from equilibrium made by the object on the…arrow_forwardSuppose f(x) is a continuous function that is zero when x is −1, 3, or 6 and nowhere else. Suppose we tested the function at a few points and found that ƒ(−2) 0, and f(7) < 0. Let x(t) be the solution to x' f(x) and x(0) = 1. Compute: lim x(t) help (numbers) t→∞ Book: Section 1.6 of Notes on Diffy Qsarrow_forwardConsider the initial value problem У y' = sin(x) + y(-4) = 5 4 Use Euler's Method with five steps to approximate y(-2) to at least two decimal places (but do not round intermediate results). y(-2) ≈ help (numbers) Book: Section 1.7 of Notes on Diffy Qsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellIntermediate AlgebraAlgebraISBN:9781285195728Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice UniversityBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Intermediate Algebra
Algebra
ISBN:9781285195728
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY