HEART OF MATHEMATICS
4th Edition
ISBN: 9781119760061
Author: Burger
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.3, Problem 25MS
Stingy rather than greedy. By coloring the vertices in the graph from the previous Mindscapes in any order, is it possible to use fewer colors than you used in the previous Mindscape and still have no two vertices of the same color joined by an edge?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the union of the given pair of simple graphs.
Where is the number of stores in that graph?
Each vertex in the graph represents an animal that needs to be transported to the zoo. Two vertices are connected by an edge whenever the corresponding
animals cannot be placed in the same cage (i.e., the edges represent pairs of animals that would harm each other if caged together). What is the fewest
number of cages needed to transport these animals? Give a conflict-free way to assign them to cages.
S
V
U
W
Y
Chapter 6 Solutions
HEART OF MATHEMATICS
Ch. 6.1 - Map maker, map maker make me a graph. Represent...Ch. 6.1 - Unabridged list. Represent cach landmass from...Ch. 6.1 - Will the walk work? Does your graph from...Ch. 6.1 - Walk around the house. Is it possibel to traverse...Ch. 6.1 - Walk the line. Does this graph above have an Euler...Ch. 6.1 - Walkabout. Does this graph have an Euler circuit?...Ch. 6.1 - Linking the loops. In this map, the following...Ch. 6.1 - Scenic drive. (S) Here is a map of Rockystone...Ch. 6.1 - Under-edged. (H) Does this graph have an Euler...Ch. 6.1 - No man is an island. The country of Pelago...
Ch. 6.1 - Path-o-rama. For each graph below, determine if...Ch. 6.1 - Walk around the block. Create a graph of the...Ch. 6.1 - Walking the dogs. Your dogs, Abbey and Bear, love...Ch. 6.1 - Delivery query. The next time you see a postal...Ch. 6.1 - Snow job. (ExH) Shown here is a map of the tiny...Ch. 6.1 - Special delivery. (ExH) Julia is the letter...Ch. 6.1 - Draw this old house. Suppose you wanted to trace...Ch. 6.1 - Path of no return. Consider this map showing a...Ch. 6.1 - Without a trace. Is it possibel to trace out...Ch. 6.1 - New Euler. In the three previous Mindscapes, you...Ch. 6.1 - New edge—new circuit. Look at the graph for...Ch. 6.1 - New edge—new path. Review your work for...Ch. 6.1 - Path to proof. Suppose you have a connected graph...Ch. 6.1 - No Euler no how. Look at graph (a) for Mindscape...Ch. 6.1 - Degree day. (S) For cach graph below, determine...Ch. 6.1 - degrees of proof. Review your work for Mindscape...Ch. 6.1 - Degrees in sequence. Can you draw a graph that has...Ch. 6.1 - Even Steven. Review your work in Mindscape 28 to...Ch. 6.1 - Little League lesson. (H) You are in charge of...Ch. 6.1 - With a group of folks. In a small group, discuss...Ch. 6.1 - Power beyond the mathematics. Provide several...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.1 - Here we celebrate the power of algebra as a...Ch. 6.2 - What a character! What expression gives the Euler...Ch. 6.2 - Count, then verify. What are the values of V, E,...Ch. 6.2 - Sneeze, then verify. Look at an unopened tissue...Ch. 6.2 - Blow, then verify. Inflate a ballon and use a...Ch. 6.2 - Add one. Find the values V, E, and F for the graph...Ch. 6.2 - Bowling. What is the Euler Characteristic of the...Ch. 6.2 - Making change. We begin with the graph pictured at...Ch. 6.2 - Making a point. Take a connected graph and add a...Ch. 6.2 - On the edge (H). Is it possible to add an edge to...Ch. 6.2 - Soap films. Consider the following sequence of...Ch. 6.2 - Dualing. What is the relationship between the...Ch. 6.2 - Prob. 12MSCh. 6.2 - Lots of separation. Suppose we are told that a...Ch. 6.2 - Prob. 14MSCh. 6.2 - Psychic readings. Someone is thinking of a...Ch. 6.2 - Prob. 16MSCh. 6.2 - Prob. 17MSCh. 6.2 - Circular reasoning. Create a connected graph as...Ch. 6.2 - Prob. 19MSCh. 6.2 - More circles. Consider the sphere described in...Ch. 6.2 - In the rough (S). Count the number of facets,...Ch. 6.2 - Cutting corners (H). The following collection of...Ch. 6.2 - Stellar. The following collection of pictures...Ch. 6.2 - A torus graph (ExH). The Euler Characteristic...Ch. 6.2 - Regular unfolding. Each graph below represents...Ch. 6.2 - A tale of two graphs. Suppose we draw a graph that...Ch. 6.2 - Two graph conjectures (S). Can you conjecture a...Ch. 6.2 - Lots of graphs conjecture. Can you conjecture a...Ch. 6.2 - Torus count. Three hollowed, triangular prisms...Ch. 6.2 - Torus two count (H). Carefully count the number of...Ch. 6.2 - Torus many count. Using the preceding calculations...Ch. 6.2 - Prob. 32MSCh. 6.2 - Tell the truth. Someone said that she made a...Ch. 6.2 - No sphere. Suppose we have a sphere built out of...Ch. 6.2 - Soccer ball. A soccer ball is made of pentagons...Ch. 6.2 - Klein bottle. Using the diagram here for building...Ch. 6.2 - Not many neighbors. Show that every map has at...Ch. 6.2 - Infinite edges. Suppose we consider a conn ected...Ch. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.2 - Prob. 44MSCh. 6.2 - Prob. 45MSCh. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.2 - Here we celebrate the power of algebra as a...Ch. 6.3 - Dont be cross. Here is a drawing of a graph with...Ch. 6.3 - De Plane! De Plane! (S) Is the graph given in...Ch. 6.3 - Countdown (H). For the graph drawing shown, count...Ch. 6.3 - Prob. 4MSCh. 6.3 - Criss-Cross. Is it possible to redraw the graph...Ch. 6.3 - Dont cross in the edge. Each of the graphs drawn...Ch. 6.3 - Hot crossed buns. Each of the graphs drawn below...Ch. 6.3 - Prob. 8MSCh. 6.3 - Spider on a mirror. Is it possible to redraw the...Ch. 6.3 - One more vertex. The graph here is drawn to show...Ch. 6.3 - Yet one more vertex (H). The graph shown is drawn...Ch. 6.3 - Familiar freckles. Is it possible to redraw the...Ch. 6.3 - Remind you of anyone you know? Is it possible to...Ch. 6.3 - Final countdown. For this graph drawing, count the...Ch. 6.3 - Euler check-up. Use your answer to the previous...Ch. 6.3 - Euler second opinion. For the graph drawing shown...Ch. 6.3 - Prob. 17MSCh. 6.3 - Prob. 18MSCh. 6.3 - A colorful museum. This figure shows the floor...Ch. 6.3 - Limit of 5. Start drawing a planar graph. Keep...Ch. 6.3 - Starring the hexagon. Is it possible to redraw...Ch. 6.3 - Prob. 22MSCh. 6.3 - Prob. 23MSCh. 6.3 - Getting greedy. (H) Suppose you are asked to color...Ch. 6.3 - Stingy rather than greedy. By coloring the...Ch. 6.3 - Getting more colorful. Graphs dont have to be...Ch. 6.3 - Prob. 27MSCh. 6.3 - Prob. 28MSCh. 6.3 - Chromatically applied. There are eight radio...Ch. 6.3 - Prob. 30MSCh. 6.3 - Personal perspectives. Write a short essay...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Prob. 37MSCh. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.3 - Here we celebrate the power of algebra as a...Ch. 6.4 - Up close and personal. Create a graph to model...Ch. 6.4 - Network lookout. Find an examle of a network...Ch. 6.4 - Prob. 3MSCh. 6.4 - Hamiltonian holiday (S). You are interning for a...Ch. 6.4 - Home style. Create a graph to model the rooms in...Ch. 6.4 - Six degrees or less. Suppose this graph is a model...Ch. 6.4 - Degrees of you. Find ten willing friends or...Ch. 6.4 - Campus shortcut. Find a map of your campus and...Ch. 6.4 - Arborist lesson. Which of the graphs below are...Ch. 6.4 - Prob. 10MSCh. 6.4 - Prob. 11MSCh. 6.4 - Prob. 12MSCh. 6.4 - Prob. 13MSCh. 6.4 - Prob. 14MSCh. 6.4 - Prob. 15MSCh. 6.4 - Hamilton Study. Look at the graph you drew to...Ch. 6.4 - Business trip redux. Look back in the section and...Ch. 6.4 - Handling Hamiltons. For each graph below, find a...Ch. 6.4 - Road trip. You are checking out gradua te programs...Ch. 6.4 - Back to Hatties trip. Look back in this section...Ch. 6.4 - Solve the Icosian Game. Find a Hamiltonian circuit...Ch. 6.4 - Hunt for Hamilton (S). A large island country has...Ch. 6.4 - Has no Hamilton. Give some characteristics that...Ch. 6.4 - Cubing Hamilton (ExH). Can you find a Hamihonian...Ch. 6.4 - Hamiltonian path. A Hamiltonian path is a path in...Ch. 6.4 - Sorry, no path. Give some characteristics that...Ch. 6.4 - Prob. 27MSCh. 6.4 - Prob. 28MSCh. 6.4 - Prob. 29MSCh. 6.4 - Prob. 30MSCh. 6.4 - Edge count. Look at all the trees you drew in the...Ch. 6.4 - Personal perspecthes. Write a short essay...Ch. 6.4 - Prob. 33MSCh. 6.4 - Prob. 34MSCh. 6.4 - Dollars and cents. Your spanning tree has three...Ch. 6.4 - Adding up. Your spanning tree has four edges with...Ch. 6.4 - Prob. 38MSCh. 6.4 - Vertex search (H). Your graph has a Hamiltonian...Ch. 6.4 - Binary gossip tree. You told a secret to two of...
Additional Math Textbook Solutions
Find more solutions based on key concepts
CHECK POINT 1 In a survey on musical tastes, respondents were asked: Do you listed to classical music? Do you l...
Thinking Mathematically (6th Edition)
For any sequence of events E1,E2,..., define a new sequence F1,F2,... of disjoint events (that is. events such ...
A First Course in Probability (10th Edition)
Of a group of patients having injuries, 28% visit both a physical therapist and a chiropractor while 8% visit n...
Probability And Statistical Inference (10th Edition)
The graph of y=2x+3 is to be drawn.
Pre-Algebra Student Edition
Cylinder and paraboloids Find the volume of the region bounded below by the paraboloid z = x2 + y2, laterally b...
University Calculus: Early Transcendentals (4th Edition)
ASSESSMENT Find the first five terms in sequences with the following nth terms. a. n2+2 b. 5n+1 c. 10n1 d. 3n2 ...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Socaccio Pistachio, Inc. makes two types of pistachio nuts: Dazzling Red and Organic. Pistachio nuts require food color and salt, and the following table shows the amount of food color and salt required fo a 1-kilogram batch of pistachios as well as the total amount of these ingridients available each day: Use a graph to show the possible numbers of batches of each type of pistachio Socaccio can produce each day. Dazzling Red Organic Total Available Food color(grams) 2 1 20 Salt(grams) 10 20 220arrow_forwardThe floor plan of the art gallery is pictured below. Draw a graph that represents the floor plan, where vertices correspond to rooms and edges correspond to doorways. Is it possible to take a stroll that passes through every doorway without going through the same doorway twice? If so, does it matter whether we return to the starting point?arrow_forwardLabel the vertices of the second graph to make the second graph equivalent to the first grapharrow_forward
- Consider the following graph. (Enter your answers as comma-separated lists.) A graph with 5 vertices and 7 edges is shown. Loop e1 connects vertex v1 and vertex v1. Edge e2 connects vertex v1 and vertex v2. Edge e7 connects vertex v1 and vertex v3. Loop e3 connects vertex v2 and vertex v2. Edge e6 connects vertex v2 and vertex v3. Edge e4 connects vertex v2 and vertex v5. Edge e5 connects vertex v2 and vertex v5. Vertex v4 is isolated. (a) Find all edges that are incident on v1. (b) Find all vertices that are adjacent to v3. (c) Find all edges that are adjacent to e1. (d) Find all loops. (e) Find all parallel edges. (f) Find all isolated vertices. (g) Find the degree of v3.arrow_forwardKansas City The graph models the baseball schedule for a week. The vertices represent the teams. Each game played is represented as an edge between two teams. How many games are scheduled for Kansas City during the week? List the teams that they are playing. How many times are they playing each of these teams? Nashville Arlington Seattle Detroit Toronto How many games are scheduled for Kansas City during the week? The number of games scheduled for Kansas City is 6. (Type a whole number.) List the teams that Kansas City is playing. Select all that apply. YA. Detroit O B. Arlington Seattle C. YD. Nashville E. Toronto O F. No teams How many times is Kansas City playing each of these teams this week? Kansas City is playing Nashville time(s), Arlington time(s), Detroit time(s), Seattle time(s), and Toronto time(s). (Type whole numbers.)arrow_forwardKansas City The graph models the baseball schedule for a week. The vertices represent the teams. Each game played is represented as an edge between two teams. How many games are scheduled for Kansas City during the week? List the teams that they are playing. How many times are they playing each of these teams? Nashville Arlington Seattle Detroit Toronto How many games are scheduled for Kansas City during the week? The number of games scheduled for Kansas City is 6. (Type a whole number.) List the teams that Kansas City is playing. Select all that apply. O A. Detroit B. Arlington O c. Seattle O D. Nashville E. Toronto O F. No teamsarrow_forward
- Dd.65.arrow_forwardWhat is the minimum number of colors you need to color the vertices of this graph such that if two vertices are adjacent they receive different colors?arrow_forwardSuppose there are ten Middlebury College students in a room. One of those ten is friends with all of the other nine, but each of the other nine has exactly three friends in the room. Draw a graph where the vertices are these ten students and the edges represent friendships between students. Upload a picture of your graph as your response to this question.arrow_forward
- Kansas City The graph models the baseball schedule for a week. The vertices represent the teams. Each game played is represented as an edge between two teams. How many games are scheduled for Kansas City during the week? List the teams that they are playing. How many times are they playing each of these teams? Nashville Arlington Seattle Detroit Toronto ..... How many games are scheduled for Kansas City during the week? The number of games scheduled for Kansas City is 6. (Type a whole number.) List the teams that Kansas City is playing. Select all that apply. A. Detroit O B. Arlington YC. Seattle D. Nashville E. Toronto O F. No teams How many times is Kansas City playing each of these teams this week? Kansas City is playing Nashville time(s), Arlington time(s), Detroit time(s), Seattle time(s), and Toronto time(s). (Type whole numbers.)arrow_forwardIn a round-robin tournament the Tigers beat the BlueJays, the Tigers beat the Cardinals, the Tigers beat theOrioles, the Blue Jays beat the Cardinals, the Blue Jaysbeat the Orioles, and the Cardinals beat the Orioles.Model this outcome with a directed graph.arrow_forwardYou have a simple graph G with three vertices and three edges. How many subgraphs can be made from the graph G?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Graph Theory: Euler Paths and Euler Circuits; Author: Mathispower4u;https://www.youtube.com/watch?v=5M-m62qTR-s;License: Standard YouTube License, CC-BY
WALK,TRIAL,CIRCUIT,PATH,CYCLE IN GRAPH THEORY; Author: DIVVELA SRINIVASA RAO;https://www.youtube.com/watch?v=iYVltZtnAik;License: Standard YouTube License, CC-BY