In Problems 11 and 12, a minimization problem, the corresponding dual problem, and the final simplex tableau in the solution of the dual problem are given. (A) Find the optimal solution of the dual problem. (B) Find the optimal solution of the minimization problem. Minimize C = 16 x 1 + 25 x 2 subject to 3 x 1 + 5 x 2 ≥ 30 2 x 1 + 3 x 2 ≥ 19 x 1 , x 2 ≥ 0 Maximize P = 30 y 1 + 19 y 2 subject to 3 y 1 + 2 y 2 ≤ 16 5 y 1 + 3 y 2 ≤ 25 y 1 , y 2 ≥ 0 y 1 y 2 x 1 x 2 P 0 1 5 − 3 0 5 1 0 − 3 2 0 2 0 0 5 3 1 155
In Problems 11 and 12, a minimization problem, the corresponding dual problem, and the final simplex tableau in the solution of the dual problem are given. (A) Find the optimal solution of the dual problem. (B) Find the optimal solution of the minimization problem. Minimize C = 16 x 1 + 25 x 2 subject to 3 x 1 + 5 x 2 ≥ 30 2 x 1 + 3 x 2 ≥ 19 x 1 , x 2 ≥ 0 Maximize P = 30 y 1 + 19 y 2 subject to 3 y 1 + 2 y 2 ≤ 16 5 y 1 + 3 y 2 ≤ 25 y 1 , y 2 ≥ 0 y 1 y 2 x 1 x 2 P 0 1 5 − 3 0 5 1 0 − 3 2 0 2 0 0 5 3 1 155
Solution Summary: The author calculates the optimal solution of the dual of minimization problem if the corresponding dual problem and the final simplex tableau are given.
In Problems 11 and 12, a minimization problem, the corresponding dual problem, and the final simplex tableau in the solution of the dual problem are given.
(A) Find the optimal solution of the dual problem.
(B) Find the optimal solution of the minimization problem.
Minimize
C
=
16
x
1
+
25
x
2
subject to
3
x
1
+
5
x
2
≥
30
2
x
1
+
3
x
2
≥
19
x
1
,
x
2
≥
0
Maximize
P
=
30
y
1
+
19
y
2
subject to
3
y
1
+
2
y
2
≤
16
5
y
1
+
3
y
2
≤
25
y
1
,
y
2
≥
0
y
1
y
2
x
1
x
2
P
0
1
5
−
3
0
5
1
0
−
3
2
0
2
0
0
5
3
1
155
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY