
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.2, Problem 1CP
Apply the Explicit Trapezoid Method on a grid of step size
in [0, 1] to the initial value problems in Exercise 1. Print a table of the t values, approximations, and global truncation error at each step.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Name:
Tan Tong
16.5
Bonvicino - Period 5
1 Find the exact volume of a right hexagonal prism such that the base is a regular hexagon with a side
length of 8 cm and whose distance between the two bases is 5 cm. Show all work.
(4 pts)
83
tan 30°=
Regular hexagon
So length ~
480
tango Cm
Hexagon
int angle
=36016
8cm
Angle bisec isper p bisect Side length
4
X=an 300
2 In the accompanying diagram of circle O, PA is tangent to the
circle at A, PDC is a secant, diameter AEOC intersects chord
BD at E, chords AB, BC, and DA are drawn, mDA = 46° and mBC
is 32° more than mAB. If the radius of the circle is 8 cm, E is
the midpoint of AO and the length of ED is 2 less than the
length of BE, answer each of the following. Show all work.
(a) m
18:36
G.C.A.2.ChordsSecantsandTa...
จ 76
完成
2 In the accompanying diagram, AABC is inscribed
in circle O, AP bisects BAC, PBD is tangent to
circle O at B, and
mZACB:m/CAB:m/ABC= 4:3:2
D
B
P
F
Find: mZABC, mBF, m/BEP, m/P, m/PBC
←
1
Ő
14:09
2/16
jmap.org
5G 66
In the accompanying diagram of circle O,
diameters BD and AE, secants PAB and PDC, and
chords BC and AD are drawn; mAD = 40; and
mDC
= 80.
B
E
Find: mAB, m/BCD, m/BOE, m/P, m/PAD
←
G.C.A.2.ChordsSecantsand Tangent
s19.pdf (538 KB)
+
4
保存... X
Chapter 6 Solutions
Numerical Analysis
Ch. 6.1 - Show that the function y(t)=tsint is a solution of...Ch. 6.1 - Show that the function y(t)=esint is a solution of...Ch. 6.1 - Use separation of variables to find solutions of...Ch. 6.1 - Find the solutions of the IVP given by y(0)=0 and...Ch. 6.1 - Apply Eulers Method with step size h=1/4 to the...Ch. 6.1 - Apply Eulers Method with step size h=1/4 to the...Ch. 6.1 - (a) Show that y=tan(t+c) is a solution of the...Ch. 6.1 - (a) Show that y=tanh(t+c) is a solution of the...Ch. 6.1 - For which of these initial value problems on [0,...Ch. 6.1 - Sketch the slope field of the differential...
Ch. 6.1 - Find the solutions of the initial value problems...Ch. 6.1 - (a)Show that if a0, the solution of the initial...Ch. 6.1 - Use separation of variables to solve the initial...Ch. 6.1 - Find the solution of the initial value problem...Ch. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Apply Eulers Method with step size h=0.1 on [0, 1]...Ch. 6.1 - Plot the Eulers Method approximate solutions for...Ch. 6.1 - Plot the Eulers Method approximate solutions for...Ch. 6.1 - Prob. 4CPCh. 6.1 - For the IVPs in Exercise 4, make a log-log plot of...Ch. 6.1 - Prob. 6CPCh. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.1 - Calculate the Eulers Method approximate solution...Ch. 6.1 - Calculate the Eulers Method approximate solution...Ch. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.2 - Using initial condition y(0)=1 and step size...Ch. 6.2 - Using initial condition y(0)=0 and step size...Ch. 6.2 - Find the formula for the second-order Taylor...Ch. 6.2 - Apply the second-order Taylor Method to the...Ch. 6.2 - (a) Prove (6.22) (b) Prove (6.23).Ch. 6.2 - Apply the Explicit Trapezoid Method on a grid of...Ch. 6.2 - Prob. 2CPCh. 6.2 - Prob. 3CPCh. 6.2 - Prob. 4CPCh. 6.2 - Prob. 5CPCh. 6.2 - Plot the Trapezoid Method approximate solution on...Ch. 6.2 - Calculate the Trapezoid Method approximate...Ch. 6.2 - Calculate the Trapezoid Method approximate...Ch. 6.2 - Prob. 9CPCh. 6.3 - Apply the Eulers Method with step size h=1/4 to...Ch. 6.3 - Apply the Trapezoid Method with h=1/4 to the...Ch. 6.3 - Convert the higher-order ordinary differential...Ch. 6.3 - Apply the Trapezoid Method with h=1/4 to the...Ch. 6.3 - (a) Show that y(t)=(et+ett2)/21 is the solution of...Ch. 6.3 - Apply Eulers Method with step sizes h=0.1 and 0.01...Ch. 6.3 - Carry out Computer Problem 1for the Trapezoid...Ch. 6.3 - Prob. 3CPCh. 6.3 - Prob. 4CPCh. 6.3 - Prob. 5CPCh. 6.3 - Adapt pend.m to build a damped pendulum with...Ch. 6.3 - Prob. 7CPCh. 6.3 - Prob. 8CPCh. 6.3 - Prob. 9CPCh. 6.3 - Prob. 10CPCh. 6.3 - Prob. 11CPCh. 6.3 - Prob. 12CPCh. 6.3 - Prob. 13CPCh. 6.3 - Prob. 14CPCh. 6.3 - Prob. 15CPCh. 6.3 - A remarkable three-body figure-eight orbit was...Ch. 6.4 - Apply the Midpoint Method for the IVPs...Ch. 6.4 - Carry out the steps of Exercise 1 for the IVPs...Ch. 6.4 - Apply fourth-order Runge-Kutta Method to the IVPs...Ch. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Consider the initial value problem y=y . The...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 1CPCh. 6.4 - Apply the fourth-order Runge-Kutta Method solution...Ch. 6.4 - Carry out the steps of Computer Problem 2, but...Ch. 6.4 - Prob. 4CPCh. 6.4 - Plot the fourth-order Runge-Kutta Method...Ch. 6.4 - Plot the fourth-order Runge-Kutta Method...Ch. 6.4 - Prob. 7CPCh. 6.4 - Prob. 8CPCh. 6.4 - Prob. 9CPCh. 6.4 - Prob. 10CPCh. 6.4 - Adapt the orbit .m MATLABs program to animate a...Ch. 6.4 - Assess the conditioning of the Lorenz equations by...Ch. 6.4 - Follow two trajectories of the Lorenz equations...Ch. 6.4 - Prob. 14CPCh. 6.4 - Prob. 15CPCh. 6.4 - Prob. 16CPCh. 6.4 - Prob. 17CPCh. 6.4 - Prob. 18CPCh. 6.4 - Run tacoma.m with wind speed W=80km/hr and initial...Ch. 6.4 - Replace the Trapezoid Method by fourth-order...Ch. 6.4 - The system is torsionally stable for W=50km/hr ....Ch. 6.4 - Find the minimum wind speed W for which a small...Ch. 6.4 - Prob. 5SACh. 6.4 - Prob. 6SACh. 6.4 - Prob. 7SACh. 6.5 - Write a MATLAB implementation of RK23 (Example...Ch. 6.5 - Prob. 2CPCh. 6.5 - Prob. 3CPCh. 6.5 - Compare the results of Computer Problem 3 with the...Ch. 6.5 - Apply a MATLAB implementation of RKF45 to...Ch. 6.6 - Using initial condition y(0)=0 and step size...Ch. 6.6 - Find all equilibrium solutions and the value of...Ch. 6.6 - Prob. 3ECh. 6.6 - Consider the linear differential equation y=ay+b...Ch. 6.6 - Apply Backward Euler, using Newtons Method as a...Ch. 6.6 - Carry out the steps in Computer Problem1 for the...Ch. 6.7 - Apply the Adams-Bashforth Two-Step Method to the...Ch. 6.7 - Carry out the steps of Exercise 1 on the IVPs...Ch. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Show that the Implicit Trapezoid Method (6.89) is...Ch. 6.7 - Prob. 6ECh. 6.7 - Prob. 7ECh. 6.7 - Prob. 8ECh. 6.7 - Find the order and stability type for the...Ch. 6.7 - Prob. 10ECh. 6.7 - Prob. 11ECh. 6.7 - The Mime-Simpson Method is a weakly stable...Ch. 6.7 - Prob. 13ECh. 6.7 - (a) Use the matrix formulation to find the...Ch. 6.7 - Prob. 15ECh. 6.7 - (a) Use the matrix formulation to find the...Ch. 6.7 - Adapt the exmultistep.m program to apply the...Ch. 6.7 - Adapt the exmultistep.m program to apply the...Ch. 6.7 - Prob. 3CPCh. 6.7 - Prob. 4CPCh. 6.7 - Prob. 5CPCh. 6.7 - Prob. 6CPCh. 6.7 - Prob. 7CPCh. 6.7 - Prob. 8CPCh. 6.7 - Prob. 9CPCh. 6.7 - Change Program 6.8 into a fourth-order...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 16:39 < 文字 15:28 |美图秀秀 保存 59% 5G 46 照片 完成 Bonvicino - Period Name: 6. A right regular hexagonal pyramid with the top removed (as shown in Diagram 1) in such a manner that the top base is parallel to the base of the pyramid resulting in what is shown in Diagram 2. A wedge (from the center) is then removed from this solid as shown in Diagram 3. 30 Diogram 1 Diegrom 2. Diagram 3. If the height of the solid in Diagrams 2 and 3 is the height of the original pyramid, the radius of the base of the pyramid is 10 cm and each lateral edge of the solid in Diagram 3 is 12 cm, find the exact volume of the solid in Diagram 3, measured in cubic meters. Show all work. (T 文字 贴纸 消除笔 涂鸦笔 边框 马赛克 去美容arrow_forwardAnswer question 4 pleasearrow_forward16:39 < 文字 15:28 |美图秀秀 保存 59% 5G 46 照片 完成 Bonvicino - Period Name: 6. A right regular hexagonal pyramid with the top removed (as shown in Diagram 1) in such a manner that the top base is parallel to the base of the pyramid resulting in what is shown in Diagram 2. A wedge (from the center) is then removed from this solid as shown in Diagram 3. 30 Diogram 1 Diegrom 2. Diagram 3. If the height of the solid in Diagrams 2 and 3 is the height of the original pyramid, the radius of the base of the pyramid is 10 cm and each lateral edge of the solid in Diagram 3 is 12 cm, find the exact volume of the solid in Diagram 3, measured in cubic meters. Show all work. (T 文字 贴纸 消除笔 涂鸦笔 边框 马赛克 去美容arrow_forward
- Problem 11 (a) A tank is discharging water through an orifice at a depth of T meter below the surface of the water whose area is A m². The following are the values of a for the corresponding values of A: A 1.257 1.390 x 1.50 1.65 1.520 1.650 1.809 1.962 2.123 2.295 2.462|2.650 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 Using the formula -3.0 (0.018)T = dx. calculate T, the time in seconds for the level of the water to drop from 3.0 m to 1.5 m above the orifice. (b) The velocity of a train which starts from rest is given by the fol- lowing table, the time being reckoned in minutes from the start and the speed in km/hour: | † (minutes) |2|4 6 8 10 12 14 16 18 20 v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0 Estimate approximately the total distance ran in 20 minutes.arrow_forward- Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2 multiple of n, i.e. n mod p, 2n mod p, ..., p-1 2 -n mod p. Let T be the subset of S consisting of those residues which exceed p/2. Find the set T, and hence compute the Legendre symbol (7|23). 23 32 how come? The first 11 multiples of 7 reduced mod 23 are 7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8. The set T is the subset of these residues exceeding So T = {12, 14, 17, 19, 21}. By Gauss' lemma (Apostol Theorem 9.6), (7|23) = (−1)|T| = (−1)5 = −1.arrow_forwardLet n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2 multiple of n, i.e. n mod p, 2n mod p, ..., 2 p-1 -n mod p. Let T be the subset of S consisting of those residues which exceed p/2. Find the set T, and hence compute the Legendre symbol (7|23). The first 11 multiples of 7 reduced mod 23 are 7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8. 23 The set T is the subset of these residues exceeding 2° So T = {12, 14, 17, 19, 21}. By Gauss' lemma (Apostol Theorem 9.6), (7|23) = (−1)|T| = (−1)5 = −1. how come?arrow_forward
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forward3. A different 7-Eleven has a bank of slurpee fountain heads. Their available flavors are as follows: Mountain Dew, Mountain Dew Code Red, Grape, Pepsi and Mountain Dew Livewire. You fill five different cups full with each type of flavor. How many different ways can you arrange the cups in a line if exactly two Mountain Dew flavors are next to each other? 3.2.1arrow_forwardBusinessarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY