Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.2, Problem 3E
Find the formula for the second-order Taylor Method for the following differential equations:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answers
What is a solution to a differential equation? We said that a differential equation is an equation that
describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential
equation, we mean simply a function that satisfies this description.
2. Here is a differential equation which describes an unknown position function s(t):
ds
dt
318
4t+1,
ds
(a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate
you really do get 4t +1.
and check that
dt'
(b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation?
(c) Is s(t)=2t2 + 3t also a solution to this differential equation?
ds
1
dt
(d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the
right side of the equation by multiplying, and then integrate both sides. What do you get?
(e) Does this differential equation have a unique solution, or an infinite family of solutions?
these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.
Chapter 6 Solutions
Numerical Analysis
Ch. 6.1 - Show that the function y(t)=tsint is a solution of...Ch. 6.1 - Show that the function y(t)=esint is a solution of...Ch. 6.1 - Use separation of variables to find solutions of...Ch. 6.1 - Find the solutions of the IVP given by y(0)=0 and...Ch. 6.1 - Apply Eulers Method with step size h=1/4 to the...Ch. 6.1 - Apply Eulers Method with step size h=1/4 to the...Ch. 6.1 - (a) Show that y=tan(t+c) is a solution of the...Ch. 6.1 - (a) Show that y=tanh(t+c) is a solution of the...Ch. 6.1 - For which of these initial value problems on [0,...Ch. 6.1 - Sketch the slope field of the differential...
Ch. 6.1 - Find the solutions of the initial value problems...Ch. 6.1 - (a)Show that if a0, the solution of the initial...Ch. 6.1 - Use separation of variables to solve the initial...Ch. 6.1 - Find the solution of the initial value problem...Ch. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Apply Eulers Method with step size h=0.1 on [0, 1]...Ch. 6.1 - Plot the Eulers Method approximate solutions for...Ch. 6.1 - Plot the Eulers Method approximate solutions for...Ch. 6.1 - Prob. 4CPCh. 6.1 - For the IVPs in Exercise 4, make a log-log plot of...Ch. 6.1 - Prob. 6CPCh. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.1 - Calculate the Eulers Method approximate solution...Ch. 6.1 - Calculate the Eulers Method approximate solution...Ch. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.2 - Using initial condition y(0)=1 and step size...Ch. 6.2 - Using initial condition y(0)=0 and step size...Ch. 6.2 - Find the formula for the second-order Taylor...Ch. 6.2 - Apply the second-order Taylor Method to the...Ch. 6.2 - (a) Prove (6.22) (b) Prove (6.23).Ch. 6.2 - Apply the Explicit Trapezoid Method on a grid of...Ch. 6.2 - Prob. 2CPCh. 6.2 - Prob. 3CPCh. 6.2 - Prob. 4CPCh. 6.2 - Prob. 5CPCh. 6.2 - Plot the Trapezoid Method approximate solution on...Ch. 6.2 - Calculate the Trapezoid Method approximate...Ch. 6.2 - Calculate the Trapezoid Method approximate...Ch. 6.2 - Prob. 9CPCh. 6.3 - Apply the Eulers Method with step size h=1/4 to...Ch. 6.3 - Apply the Trapezoid Method with h=1/4 to the...Ch. 6.3 - Convert the higher-order ordinary differential...Ch. 6.3 - Apply the Trapezoid Method with h=1/4 to the...Ch. 6.3 - (a) Show that y(t)=(et+ett2)/21 is the solution of...Ch. 6.3 - Apply Eulers Method with step sizes h=0.1 and 0.01...Ch. 6.3 - Carry out Computer Problem 1for the Trapezoid...Ch. 6.3 - Prob. 3CPCh. 6.3 - Prob. 4CPCh. 6.3 - Prob. 5CPCh. 6.3 - Adapt pend.m to build a damped pendulum with...Ch. 6.3 - Prob. 7CPCh. 6.3 - Prob. 8CPCh. 6.3 - Prob. 9CPCh. 6.3 - Prob. 10CPCh. 6.3 - Prob. 11CPCh. 6.3 - Prob. 12CPCh. 6.3 - Prob. 13CPCh. 6.3 - Prob. 14CPCh. 6.3 - Prob. 15CPCh. 6.3 - A remarkable three-body figure-eight orbit was...Ch. 6.4 - Apply the Midpoint Method for the IVPs...Ch. 6.4 - Carry out the steps of Exercise 1 for the IVPs...Ch. 6.4 - Apply fourth-order Runge-Kutta Method to the IVPs...Ch. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Consider the initial value problem y=y . The...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 1CPCh. 6.4 - Apply the fourth-order Runge-Kutta Method solution...Ch. 6.4 - Carry out the steps of Computer Problem 2, but...Ch. 6.4 - Prob. 4CPCh. 6.4 - Plot the fourth-order Runge-Kutta Method...Ch. 6.4 - Plot the fourth-order Runge-Kutta Method...Ch. 6.4 - Prob. 7CPCh. 6.4 - Prob. 8CPCh. 6.4 - Prob. 9CPCh. 6.4 - Prob. 10CPCh. 6.4 - Adapt the orbit .m MATLABs program to animate a...Ch. 6.4 - Assess the conditioning of the Lorenz equations by...Ch. 6.4 - Follow two trajectories of the Lorenz equations...Ch. 6.4 - Prob. 14CPCh. 6.4 - Prob. 15CPCh. 6.4 - Prob. 16CPCh. 6.4 - Prob. 17CPCh. 6.4 - Prob. 18CPCh. 6.4 - Run tacoma.m with wind speed W=80km/hr and initial...Ch. 6.4 - Replace the Trapezoid Method by fourth-order...Ch. 6.4 - The system is torsionally stable for W=50km/hr ....Ch. 6.4 - Find the minimum wind speed W for which a small...Ch. 6.4 - Prob. 5SACh. 6.4 - Prob. 6SACh. 6.4 - Prob. 7SACh. 6.5 - Write a MATLAB implementation of RK23 (Example...Ch. 6.5 - Prob. 2CPCh. 6.5 - Prob. 3CPCh. 6.5 - Compare the results of Computer Problem 3 with the...Ch. 6.5 - Apply a MATLAB implementation of RKF45 to...Ch. 6.6 - Using initial condition y(0)=0 and step size...Ch. 6.6 - Find all equilibrium solutions and the value of...Ch. 6.6 - Prob. 3ECh. 6.6 - Consider the linear differential equation y=ay+b...Ch. 6.6 - Apply Backward Euler, using Newtons Method as a...Ch. 6.6 - Carry out the steps in Computer Problem1 for the...Ch. 6.7 - Apply the Adams-Bashforth Two-Step Method to the...Ch. 6.7 - Carry out the steps of Exercise 1 on the IVPs...Ch. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Show that the Implicit Trapezoid Method (6.89) is...Ch. 6.7 - Prob. 6ECh. 6.7 - Prob. 7ECh. 6.7 - Prob. 8ECh. 6.7 - Find the order and stability type for the...Ch. 6.7 - Prob. 10ECh. 6.7 - Prob. 11ECh. 6.7 - The Mime-Simpson Method is a weakly stable...Ch. 6.7 - Prob. 13ECh. 6.7 - (a) Use the matrix formulation to find the...Ch. 6.7 - Prob. 15ECh. 6.7 - (a) Use the matrix formulation to find the...Ch. 6.7 - Adapt the exmultistep.m program to apply the...Ch. 6.7 - Adapt the exmultistep.m program to apply the...Ch. 6.7 - Prob. 3CPCh. 6.7 - Prob. 4CPCh. 6.7 - Prob. 5CPCh. 6.7 - Prob. 6CPCh. 6.7 - Prob. 7CPCh. 6.7 - Prob. 8CPCh. 6.7 - Prob. 9CPCh. 6.7 - Change Program 6.8 into a fourth-order...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Q1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.arrow_forward************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forwardProve that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "arrow_forward
- Prove that, for x ≥ 2, d(n) n2 log x = B ― +0 X (금) n≤x where B is a constant that you should determine.arrow_forwardProve that, for x ≥ 2, > narrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forward1 2 21. For the matrix A = 3 4 find AT (the transpose of A). 22. Determine whether the vector @ 1 3 2 is perpendicular to -6 3 2 23. If v1 = (2) 3 and v2 = compute V1 V2 (dot product). .arrow_forward7. Find the eigenvalues of the matrix (69) 8. Determine whether the vector (£) 23 is in the span of the vectors -0-0 and 2 2arrow_forward1. Solve for x: 2. Simplify: 2x+5=15. (x+3)² − (x − 2)². - b 3. If a = 3 and 6 = 4, find (a + b)² − (a² + b²). 4. Solve for x in 3x² - 12 = 0. -arrow_forward5. Find the derivative of f(x) = 6. Evaluate the integral: 3x3 2x²+x— 5. - [dz. x² dx.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY