
Numerical Analysis
3rd Edition
ISBN: 9780134696454
Author: Sauer, Tim
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.7, Problem 10CP
Change Program 6.8 into a fourth-order predictor-corrector method, using the Adams- Bashforth Four-Step Method and the Adams—Moulton Three-Step Method with step size 0.05. Plot the approximation and the correct solution of IVP (6.5) on the interval [0, 5].
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A local company has a 6 person management team and 20 employees. The company needs to select 3 people from the management team and 7 employees to attend a regional meeting. How many different possibilities are there for the group that can be sent to the regional meeting?
Can you solve this 2 question numerical method
I have 15 outfits to select from to pack for my business trip. I would like to select three of them to pack in my suitcase. How many packing possibilities are there?
Chapter 6 Solutions
Numerical Analysis
Ch. 6.1 - Show that the function y(t)=tsint is a solution of...Ch. 6.1 - Show that the function y(t)=esint is a solution of...Ch. 6.1 - Use separation of variables to find solutions of...Ch. 6.1 - Find the solutions of the IVP given by y(0)=0 and...Ch. 6.1 - Apply Eulers Method with step size h=1/4 to the...Ch. 6.1 - Apply Eulers Method with step size h=1/4 to the...Ch. 6.1 - (a) Show that y=tan(t+c) is a solution of the...Ch. 6.1 - (a) Show that y=tanh(t+c) is a solution of the...Ch. 6.1 - For which of these initial value problems on [0,...Ch. 6.1 - Sketch the slope field of the differential...
Ch. 6.1 - Find the solutions of the initial value problems...Ch. 6.1 - (a)Show that if a0, the solution of the initial...Ch. 6.1 - Use separation of variables to solve the initial...Ch. 6.1 - Find the solution of the initial value problem...Ch. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Apply Eulers Method with step size h=0.1 on [0, 1]...Ch. 6.1 - Plot the Eulers Method approximate solutions for...Ch. 6.1 - Plot the Eulers Method approximate solutions for...Ch. 6.1 - Prob. 4CPCh. 6.1 - For the IVPs in Exercise 4, make a log-log plot of...Ch. 6.1 - Prob. 6CPCh. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.1 - Calculate the Eulers Method approximate solution...Ch. 6.1 - Calculate the Eulers Method approximate solution...Ch. 6.1 - Plot the Eulers Method approximate solution on [0,...Ch. 6.2 - Using initial condition y(0)=1 and step size...Ch. 6.2 - Using initial condition y(0)=0 and step size...Ch. 6.2 - Find the formula for the second-order Taylor...Ch. 6.2 - Apply the second-order Taylor Method to the...Ch. 6.2 - (a) Prove (6.22) (b) Prove (6.23).Ch. 6.2 - Apply the Explicit Trapezoid Method on a grid of...Ch. 6.2 - Prob. 2CPCh. 6.2 - Prob. 3CPCh. 6.2 - Prob. 4CPCh. 6.2 - Prob. 5CPCh. 6.2 - Plot the Trapezoid Method approximate solution on...Ch. 6.2 - Calculate the Trapezoid Method approximate...Ch. 6.2 - Calculate the Trapezoid Method approximate...Ch. 6.2 - Prob. 9CPCh. 6.3 - Apply the Eulers Method with step size h=1/4 to...Ch. 6.3 - Apply the Trapezoid Method with h=1/4 to the...Ch. 6.3 - Convert the higher-order ordinary differential...Ch. 6.3 - Apply the Trapezoid Method with h=1/4 to the...Ch. 6.3 - (a) Show that y(t)=(et+ett2)/21 is the solution of...Ch. 6.3 - Apply Eulers Method with step sizes h=0.1 and 0.01...Ch. 6.3 - Carry out Computer Problem 1for the Trapezoid...Ch. 6.3 - Prob. 3CPCh. 6.3 - Prob. 4CPCh. 6.3 - Prob. 5CPCh. 6.3 - Adapt pend.m to build a damped pendulum with...Ch. 6.3 - Prob. 7CPCh. 6.3 - Prob. 8CPCh. 6.3 - Prob. 9CPCh. 6.3 - Prob. 10CPCh. 6.3 - Prob. 11CPCh. 6.3 - Prob. 12CPCh. 6.3 - Prob. 13CPCh. 6.3 - Prob. 14CPCh. 6.3 - Prob. 15CPCh. 6.3 - A remarkable three-body figure-eight orbit was...Ch. 6.4 - Apply the Midpoint Method for the IVPs...Ch. 6.4 - Carry out the steps of Exercise 1 for the IVPs...Ch. 6.4 - Apply fourth-order Runge-Kutta Method to the IVPs...Ch. 6.4 - Prob. 4ECh. 6.4 - Prob. 5ECh. 6.4 - Consider the initial value problem y=y . The...Ch. 6.4 - Prob. 7ECh. 6.4 - Prob. 1CPCh. 6.4 - Apply the fourth-order Runge-Kutta Method solution...Ch. 6.4 - Carry out the steps of Computer Problem 2, but...Ch. 6.4 - Prob. 4CPCh. 6.4 - Plot the fourth-order Runge-Kutta Method...Ch. 6.4 - Plot the fourth-order Runge-Kutta Method...Ch. 6.4 - Prob. 7CPCh. 6.4 - Prob. 8CPCh. 6.4 - Prob. 9CPCh. 6.4 - Prob. 10CPCh. 6.4 - Adapt the orbit .m MATLABs program to animate a...Ch. 6.4 - Assess the conditioning of the Lorenz equations by...Ch. 6.4 - Follow two trajectories of the Lorenz equations...Ch. 6.4 - Prob. 14CPCh. 6.4 - Prob. 15CPCh. 6.4 - Prob. 16CPCh. 6.4 - Prob. 17CPCh. 6.4 - Prob. 18CPCh. 6.4 - Run tacoma.m with wind speed W=80km/hr and initial...Ch. 6.4 - Replace the Trapezoid Method by fourth-order...Ch. 6.4 - The system is torsionally stable for W=50km/hr ....Ch. 6.4 - Find the minimum wind speed W for which a small...Ch. 6.4 - Prob. 5SACh. 6.4 - Prob. 6SACh. 6.4 - Prob. 7SACh. 6.5 - Write a MATLAB implementation of RK23 (Example...Ch. 6.5 - Prob. 2CPCh. 6.5 - Prob. 3CPCh. 6.5 - Compare the results of Computer Problem 3 with the...Ch. 6.5 - Apply a MATLAB implementation of RKF45 to...Ch. 6.6 - Using initial condition y(0)=0 and step size...Ch. 6.6 - Find all equilibrium solutions and the value of...Ch. 6.6 - Prob. 3ECh. 6.6 - Consider the linear differential equation y=ay+b...Ch. 6.6 - Apply Backward Euler, using Newtons Method as a...Ch. 6.6 - Carry out the steps in Computer Problem1 for the...Ch. 6.7 - Apply the Adams-Bashforth Two-Step Method to the...Ch. 6.7 - Carry out the steps of Exercise 1 on the IVPs...Ch. 6.7 - Prob. 3ECh. 6.7 - Prob. 4ECh. 6.7 - Show that the Implicit Trapezoid Method (6.89) is...Ch. 6.7 - Prob. 6ECh. 6.7 - Prob. 7ECh. 6.7 - Prob. 8ECh. 6.7 - Find the order and stability type for the...Ch. 6.7 - Prob. 10ECh. 6.7 - Prob. 11ECh. 6.7 - The Mime-Simpson Method is a weakly stable...Ch. 6.7 - Prob. 13ECh. 6.7 - (a) Use the matrix formulation to find the...Ch. 6.7 - Prob. 15ECh. 6.7 - (a) Use the matrix formulation to find the...Ch. 6.7 - Adapt the exmultistep.m program to apply the...Ch. 6.7 - Adapt the exmultistep.m program to apply the...Ch. 6.7 - Prob. 3CPCh. 6.7 - Prob. 4CPCh. 6.7 - Prob. 5CPCh. 6.7 - Prob. 6CPCh. 6.7 - Prob. 7CPCh. 6.7 - Prob. 8CPCh. 6.7 - Prob. 9CPCh. 6.7 - Change Program 6.8 into a fourth-order...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- There are 15 candidates running for any of 5 distinct positions on the local school board. In how many different ways could the 5 positions be filled?arrow_forwardUse the Euclidean algorithm to find two sets of integers (a, b, c) such that 55a65b+143c: Solution = 1. By the Euclidean algorithm, we have: 143 = 2.65 + 13 and 65 = 5.13, so 13 = 143 – 2.65. - Also, 55 = 4.13+3, 13 = 4.3 + 1 and 3 = 3.1, so 1 = 13 — 4.3 = 13 — 4(55 – 4.13) = 17.13 – 4.55. Combining these, we have: 1 = 17(143 – 2.65) - 4.55 = −4.55 - 34.65 + 17.143, so we can take a = − −4, b = −34, c = 17. By carrying out the division algorithm in other ways, we obtain different solutions, such as 19.55 23.65 +7.143, so a = = 9, b -23, c = 7. = = how ? come [Note that 13.55 + 11.65 - 10.143 0, so we can obtain new solutions by adding multiples of this equation, or similar equations.]arrow_forwardCelina is picking a new frame for a custom piece of artwork. She has to select a frame size, material, and color. There are four different frame sizes, three different frame materials, and six different frame colors. She must chose one option only from each category. How many different possible frames could Celina pick from?arrow_forward
- In a company with 80 employees, 60 earn $10.00 per hour and 20 earn $13.00 per hour. Is this average hourly wage considered representative?arrow_forwardThe following is a list of questions answered correctly on an exam. Calculate the Measures of Central Tendency from the ungrouped data list. NUMBER OF QUESTIONS ANSWERED CORRECTLY ON AN APTITUDE EXAM 112 72 69 97 107 73 92 76 86 73 126 128 118 127 124 82 104 132 134 83 92 108 96 100 92 115 76 91 102 81 95 141 81 80 106 84 119 113 98 75 68 98 115 106 95 100 85 94 106 119arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency using the table in point B. B. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8arrow_forward
- In a company with 80 employees, 60 earn $10.00 per hour and 20 earn $13.00 per hour. a) Determine the average hourly wage. b) In part a), is the same answer obtained if the 60 employees have an average wage of $10.00 per hour? Prove your answer.arrow_forward1. Estimate the area under the graph of f(x)-25-x from x=0 to x=5 using 5 approximating rectangles Using: (A) right endpoints. (B) left endpoints.arrow_forwardThe following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8arrow_forward
- 9. Use fundamental theorem of calculus to find the derivative d a) *dt sin(x) b)(x)√1-2 dtarrow_forward3. Evaluate the definite integral: a) √66x²+8dx b) x dx c) f*(2e* - 2)dx d) √√9-x² e) (2-5x)dx f) cos(x)dx 8)²₁₂√4-x2 h) f7dx i) f² 6xdx j) ²₂(4x+3)dxarrow_forward2. Consider the integral √(2x+1)dx (a) Find the Riemann sum for this integral using right endpoints and n-4. (b) Find the Riemann sum for this same integral, using left endpoints and n=4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY