EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6.11, Problem 7E
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction
has an amplitude of 30 mA/m and a frequency of 0 Hz . If the wave is polarized on the positive z direction
and its wavelength is 12.6 meter, find the relative permittivity of the material. Assume the initial phase is 0.
Select one:
O a. 2.25
O b. 1.5
O C. 1.2
O d. 2.9
O e. 1
O f. 0
Question 5
A plane wave propagate through a lossless medium with &r=3 and ur=1, the magnitude of the magnetic field of this wave is give by:
H(z,t) = 4 cos(4x 107 t - Bz) A/m
The velocity of this wave is
1.73 x 108 m/s
3x 108 m/s
0.23 x 108 m/s
2.18 x 108 m/s
A Moving to another question will save this response.
Question 4
A radio wave is propagating at a frequency of 0.5MHZ in a medium (o = 3*10 S/m
, Er = Hr =1).The wave length of the radio wave in that medium will be
3.55
Non of These
2.88 mm
5.88
A Moving to another question will save this response.
Chapter 6 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 6.2 - Explain Faradays law and the function of Lenzs...Ch. 6.2 - Prob. 2CQCh. 6.2 - Prob. 3CQCh. 6.2 - For the loop shown in Fig. 6-3, what is Vemftr if...Ch. 6.2 - Suppose that the loop of Example 6-1 is replaced...Ch. 6.4 - Suppose that no friction is involved in sliding...Ch. 6.4 - Is the current flowing in the rod of Fig. 6-10 a...Ch. 6.4 - For the moving loop of Fig. 6-9, find I when the...Ch. 6.4 - Suppose that we turn the loop of Fig. 6-9 so that...Ch. 6.5 - Contrast the operation of an ac motor with that of...
Ch. 6.5 - Prob. 7CQCh. 6.5 - Prob. 8CQCh. 6.7 - A poor conductor is characterized by a...Ch. 6.8 - When conduction current flows through a material,...Ch. 6.8 - Verify that the integral form of Ampres law given...Ch. 6.10 - Explain how the charge continuity equation leads...Ch. 6.10 - How long is the relaxation time constant for...Ch. 6.10 - Determine (a) the relaxation time constant and (b)...Ch. 6.11 - Prob. 7ECh. 6 - The switch in the bottom loop of Fig. P6.1 is...Ch. 6 - The loop in Fig. P6.2 is in the xy plane and B =...Ch. 6 - A coil consists of 100 turns of wire wrapped...Ch. 6 - A stationary conducting loop with an internal...Ch. 6 - A circular-loop TV antenna with 0.02 m2 area is in...Ch. 6 - The square loop shown in Fig. P6.6 is coplanar...Ch. 6 - The rectangular conducting loop shown in Fig. P6.7...Ch. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - A 50 cm long metal rod rotates about the z axis at...Ch. 6 - The loop shown in P6.11 moves away from a wire...Ch. 6 - The electromagnetic generator shown in Fig. 6-12...Ch. 6 - The circular, conducting, disk shown in Fig. P6.13...Ch. 6 - The plates of a parallel-plate capacitor have...Ch. 6 - A coaxial capacitor of length l = 6 cm uses an...Ch. 6 - The parallel-plate capacitor shown in Fig. P6.16...Ch. 6 - In wet soil, characterized by = 102 (S/m), r = 1,...Ch. 6 - An electromagnetic wave propagating in seawater...Ch. 6 - At t = 0, charge density v0 was introduced into...Ch. 6 - If the current density in a conducting medium is...Ch. 6 - Prob. 21PCh. 6 - If we were to characterize how good a material is...Ch. 6 - The electric field of an electromagnetic wave...Ch. 6 - The magnetic field in a dielectric material with ...Ch. 6 - Given an electric field E=xE0sinaycos(tkz), where...Ch. 6 - The electric field radiated by a short dipole...Ch. 6 - A Hertzian dipole is a short conducting wire...Ch. 6 - In free space, the magnetic field is given by...Ch. 6 - The magnetic field in a given dielectric medium is...
Knowledge Booster
Similar questions
- The magnetic field component of a plane wave in a lossless dielectric is H = 30 sin (2nx 10°t – 5z) a, mA/m a. If u=1 find b. Determine the direction of wave propagation c. Determine the polarization of the wave. d. Calculate the wavelength and wave velocity. e. Determine the wave impedance. f. Find the corresponding electric field component. g. Find the displacement current density. Er.arrow_forwardThe magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 10 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the wavenumber. Assume the initial phase is 0. Select one: O a. rad/m 12.6 O b. 2 m/sec 12.6 O c. 108 rad/m O d. 108 rad/secarrow_forwardA planar electromagnetic wave is propagating in the +x direction. At a certain point P and at a given instant, the electric field of the wave is given by E= (0.082 V/m) j. What is the Poynting vector at the point P at that instant? (c 3.0 x 10* m/s, po= 4x x 107 T m/A,£o 8.85 x 1012 C/N m2)arrow_forward
- 10) If the magnetic field component of a plane wave in a lossless dielectric is H = 50 sin (2n x 10° t- 6x) a: mA/m, what will be the wave velocity? a) 1.047 x 10° m/s b) 1.257 x 10 m/s c) 2.50 x 10° m/s d) 3 x 10° m/s Q3: Determine the polarization state of a plane wave E-fields below: a) E (z.t) = -4ã,eut-ke) + j4āye/lut-kz2), b) E(z.t) = 0.56a̟e(ut+kz+) - 0.56ã,e (ut+kz-)arrow_forwardThe magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 10 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the relative permittivity of the material. Assume the initial phase is 0. Select one: O a. 2.25 Ob. 1.5 Oc 12 d. 2.9 e. 1 f.0 magnetic field of a wve ga5a0d ena.ces n nonmadneti.cmaterian the DOsitive y directionarrow_forwardMagnetic field intensity of a propagating wave in free space is given by H=0.3 cos(4*10t- 2y) ax VIm the plot of H versus y at time, t= T/8 0.3- Ask me anything.arrow_forward
- The plane wave with a frequency of 3 GHz has a relative dielectric constant of 2.5, a loss tangent of 0.05, and travels in a non-magnetic medium. What is the impedance value of the wave? 238 Ohm 377 Ohm 120 Ohm 150 Ohmarrow_forwardThe Subject is Electromagnetic II .arrow_forwardMagnetic field intensity of a propagating wave in free space is given by H=0.3 cos(4*10°t+ 2y) ax V/m the plot of H versus y at time, t = T/4 None of these 4H F0.3 4H 0.3-arrow_forward
- The wavelength of a sinusoidal plane electromagnetic wave propagating in +y direction in vacuum is 6 x 10- m. If the amplitude of the electric field component of the wave is (9 V/m)E, what is the magnitude and the direction of the magnetic field component?arrow_forwardThe magnetic field component of a plane wave in a lossless dielectric is H = 30 sin (27× 10°t – 5z) ax mA/m g. Find the displacement current density.arrow_forwardHomework Helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,