EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 8P
(a)
To determine
The expression for
(b)
To determine
The value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solenoid (made as a long coil) is a type of electromagnet, the purpose of which is to generate a controlled magnetic eld through a coil wound into a tightly packed helix.
Starting from rst principles, derive a formula that provides us the self-inductance of a solenoid (with N windings) of length l and cross-sectional area A.
INDUCTANCE AND ELECTROMAGNETIC INDUCTION
10
Given a common magnetic core whose length is 100 cm, its cross-sectional area is 25 cm
square. The relative permeability of the core material is 5000. Two coils are tightly wound on
the core. N1 =1000 turns and N2 = 500 turns. The self-inductance of coil N1 will be: [
7.85 m H
15.7 m H
3.927 m H
5.17 mH
Chapter 6 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 6.2 - Explain Faradays law and the function of Lenzs...Ch. 6.2 - Prob. 2CQCh. 6.2 - Prob. 3CQCh. 6.2 - For the loop shown in Fig. 6-3, what is Vemftr if...Ch. 6.2 - Suppose that the loop of Example 6-1 is replaced...Ch. 6.4 - Suppose that no friction is involved in sliding...Ch. 6.4 - Is the current flowing in the rod of Fig. 6-10 a...Ch. 6.4 - For the moving loop of Fig. 6-9, find I when the...Ch. 6.4 - Suppose that we turn the loop of Fig. 6-9 so that...Ch. 6.5 - Contrast the operation of an ac motor with that of...
Ch. 6.5 - Prob. 7CQCh. 6.5 - Prob. 8CQCh. 6.7 - A poor conductor is characterized by a...Ch. 6.8 - When conduction current flows through a material,...Ch. 6.8 - Verify that the integral form of Ampres law given...Ch. 6.10 - Explain how the charge continuity equation leads...Ch. 6.10 - How long is the relaxation time constant for...Ch. 6.10 - Determine (a) the relaxation time constant and (b)...Ch. 6.11 - Prob. 7ECh. 6 - The switch in the bottom loop of Fig. P6.1 is...Ch. 6 - The loop in Fig. P6.2 is in the xy plane and B =...Ch. 6 - A coil consists of 100 turns of wire wrapped...Ch. 6 - A stationary conducting loop with an internal...Ch. 6 - A circular-loop TV antenna with 0.02 m2 area is in...Ch. 6 - The square loop shown in Fig. P6.6 is coplanar...Ch. 6 - The rectangular conducting loop shown in Fig. P6.7...Ch. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - A 50 cm long metal rod rotates about the z axis at...Ch. 6 - The loop shown in P6.11 moves away from a wire...Ch. 6 - The electromagnetic generator shown in Fig. 6-12...Ch. 6 - The circular, conducting, disk shown in Fig. P6.13...Ch. 6 - The plates of a parallel-plate capacitor have...Ch. 6 - A coaxial capacitor of length l = 6 cm uses an...Ch. 6 - The parallel-plate capacitor shown in Fig. P6.16...Ch. 6 - In wet soil, characterized by = 102 (S/m), r = 1,...Ch. 6 - An electromagnetic wave propagating in seawater...Ch. 6 - At t = 0, charge density v0 was introduced into...Ch. 6 - If the current density in a conducting medium is...Ch. 6 - Prob. 21PCh. 6 - If we were to characterize how good a material is...Ch. 6 - The electric field of an electromagnetic wave...Ch. 6 - The magnetic field in a dielectric material with ...Ch. 6 - Given an electric field E=xE0sinaycos(tkz), where...Ch. 6 - The electric field radiated by a short dipole...Ch. 6 - A Hertzian dipole is a short conducting wire...Ch. 6 - In free space, the magnetic field is given by...Ch. 6 - The magnetic field in a given dielectric medium is...
Knowledge Booster
Similar questions
- Explane for me how to solve the problem by the same steps as given , plese helparrow_forwardGENERAL RLC CIRCUITS: Solve and show your solution completely. Make sure your answers are in 4 decimals places. The ohmic resistance of a large magnetic contactor is measured to be 20 ohms. A 230 V 60 Hzis impressed upon the contactor and the current is taken as 3.2 amperes. Neglecting core loss,determine the inductance of the contactor in mH.arrow_forwardPlease solve it step by step and each step explain to me, pleasearrow_forward
- A. A coil of 1000 turns is uniformly wound on a ring of non-magnetic material, the mean diameter being 20 cm. The cross-sectional area of the coil is 4 cm2. Determine the selfinductance of the coil. Ans. 0.8mH B.An iron core 0.4m long and 5 cm2. In cross section, is wound with 300 turns. When a current of 0.5 A flows in the coil, how much is the inductance of the coil. Assume the core has a permeability of 2500.arrow_forwardA cylindrical solenoid 49 cm long with a radius of 7 mm has 325 tightly-wound turns of wire uniformly distributed along its length (see the figure). Around the middle of the solenoid is a two-turn rectangular loop 3 cm by 2 cm made of resistive wire having a resistance of 135 ohms. One microsecond after connecting the loose wire to the battery to form a series circuit with the battery and a 20 resistor, what is the magnitude of the current in the rectangular loop and its direction (clockwise or counter-clockwise in the diagram)? (The battery has an emf of 9 V.)arrow_forwardThe circuit shown in the given figure is a model of a solenoid, such as that used to engage the gear of a car’s starter motor to the engine’s flywheel. The solenoid is constructed by winding a wire around an iron core to make an electromagnet. The resistance R is that of the wire, and the inductance L is due to the electromagnetic effect. When the supply voltage vs is turned on, the resulting current activates the magnet, which moves the starter gear. Obtain the model of the current i given the supply voltage vs.arrow_forward
- An electromagnet can be modeled as an inductor in series with a resistor. Consider a large electromagnet of inductance L = 14.5 H and resistance R = 5.50 connected to a 24.0-V battery and switch as in the figure shown below. After the switch is closed, find the following. @ (a) the maximum current carried by the electromagnet 4.36 A (b) the time constant of the circuit 2.63 ✔S (c) the time it takes the current to reach 95.0% of its maximum value. 0.132 x Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. starrow_forwardA magnetic circuit consists of silicon steel of 3000 permeability, of 10 cm length and a 2 cm air gap. Both have the same cross section of 1.5 cm2. A current of 0.5 flows through the 5000 turn coil. Find the field intensity at the air gap in Oersted.arrow_forwardFor the circuit shown in Figure:a. Determine the reluctance values and show themagnetic circuit, assuming that μ = 3,000μ0.b. Determine the inductance of the device.c. The inductance of the device can be modified bycutting an air gap in the magnetic structure. If a gapof 0.1 mm is cut in the arm of length l3, what is thenew value of inductance?d. As the gap is increased in size (length), what is thelimiting value of inductance? Neglect leakage fluxand fringing effects.arrow_forward
- A solenoid is to have an inductance of 0.285 mH, a cross-sectional area of 6.00x10-4 m2, and a length of 36.0cm. How many turns per unit length should it have? (Ans. 1.02x103 turns/m) If the self-induced emf is -12.5 mV at a given time, at what rate is the current changing at that instant. (Ans. 43.9 A/s)arrow_forwardRotating Choose... Magnetic Field Mutual Choose... inductancearrow_forward(c)[ device needs to connect to a Diesel generator which generates sinusoidal AC power at 16.67 Hz. The amplitude or RMS value of the generator output voltage is adjustable. The area of cross-section of the core is 0.035 m². What constraints, if any, must be imposed on the The magnetic device of the figure is designed to operate with 240 V(rms) at 50HZ. For operation in a remote mining site, the use of this device, or the generator, if the device must be connected to the generator. You may assume that the peak B field in the core must be limited to 1.1 T to prevent magnetic saturation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,