CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.11, Problem 59P
An inventor claims to have developed a resistance heater that supplies 1.2 kWh of energy to a room for each kWh of electricity it consumes. Is this a reasonable claim, or has the inventor developed a perpetual-motion machine? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An inventor claims to have a solar powered heat pump that receives energy as heat from the sun at the rate of 10 kW and extracts energy as heat from the environment at the rate of 7 kW. This system does not require any shaft or electrical power input. If you think this device is impossible, explain why using basic principles to support your argument. If you think it might be possible, what would be the steady-state rate of transfer of energy as heat to the house? (Assume TH = 20 Cand TL = -15 C).
1. Is a temperature difference necessary to operate a heat engine? State why or
why not.
2. Definitions of efficiency vary depending on how energy is being converted.
Compare the definitions of efficiency for the human body and heat engines. How
does the definition of efficiency in each relate to the type of energy being converted
into doing work?
3. Why-other than the fact that the second law of thermodynamics says reversible
engines are the most efficient-should heat engines employing reversible processes
be more efficient than those employing irreversible processes? Consider that
dissipative mechanisms are one cause of irreversibility.
1. (a) What is the efficiency of a cyclical heat engine in which 75.0 kJ of heat
transfer occurs to the environment for every 95.0 kJ of heat transfer into the
engine? (b) How much work does it produce for 100 k) of heat transfer into the
engine?
2. The engine of a large ship does 2.00×10°J of work with an efficiency of 5.00%.
(a) How much heat…
Describe what happens to the system inside of a refrigerator or freezer in terms of heat transfer, work, and conservation of energy. Confine yourself to time periods in which the door is closed.
Chapter 6 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 6.11 - A mechanic claims to have developed a car engine...Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - Prob. 7PCh. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Baseboard heaters are basically electric...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - A heat engine has a total heat input of 1.3 kJ and...Ch. 6.11 - A steam power plant receives heat from a furnace...Ch. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A heat engine that propels a ship produces 500...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Solar energy stored in large bodies of water,...Ch. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - Prob. 27PCh. 6.11 - Prob. 29PCh. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 31PCh. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - The coefficient of performance of a residential...Ch. 6.11 - A food freezer is to produce a 5-kW cooling...Ch. 6.11 - An automotive air conditioner produces a 1-kW...Ch. 6.11 - A food refrigerator is to provide a 15,000-kJ/h...Ch. 6.11 - Prob. 44PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 46PCh. 6.11 - A heat pump with a COP of 1.4 is to produce a...Ch. 6.11 - An air conditioner removes heat steadily from a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Water enters an ice machine at 55F and leaves as...Ch. 6.11 - A refrigerator is used to cool water from 23 to 5C...Ch. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - A house that was heated by electric resistance...Ch. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - Refrigerant-134a enters the evaporator coils...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 60PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 71PCh. 6.11 - Prob. 72PCh. 6.11 - Prob. 73PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - You are an engineer in an electric-generation...Ch. 6.11 - Prob. 78PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A completely reversible heat engine operates with...Ch. 6.11 - An inventor claims to have developed a heat engine...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - An experimentalist claims that, based on his...Ch. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - Prob. 89PCh. 6.11 - Prob. 90PCh. 6.11 - Prob. 91PCh. 6.11 - Prob. 92PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - Determine the minimum work per unit of heat...Ch. 6.11 - Prob. 99PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A heat pump operates on a Carnot heat pump cycle...Ch. 6.11 - An air-conditioning system is used to maintain a...Ch. 6.11 - A Carnot refrigerator absorbs heat from a space at...Ch. 6.11 - Prob. 104PCh. 6.11 - A Carnot refrigerator operates in a room in which...Ch. 6.11 - Prob. 106PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 108PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A completely reversible heat pump has a COP of 1.6...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 113PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Calculate and plot the COP of a completely...Ch. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - Prob. 118PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 120PCh. 6.11 - Prob. 121PCh. 6.11 - Prob. 122PCh. 6.11 - It is commonly recommended that hot foods be...Ch. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 125RPCh. 6.11 - Prob. 126RPCh. 6.11 - Prob. 127RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 132RPCh. 6.11 - Consider a Carnot heat-engine cycle executed in a...Ch. 6.11 - Prob. 134RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Prob. 137RPCh. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 141RPCh. 6.11 - Prob. 142RPCh. 6.11 - Prob. 143RPCh. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 145RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - Prob. 149RPCh. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 153RPCh. 6.11 - Prob. 155RPCh. 6.11 - Prob. 156RPCh. 6.11 - Prob. 157RPCh. 6.11 - Prove that a refrigerators COP cannot exceed that...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - A window air conditioner that consumes 1 kW of...Ch. 6.11 - The drinking water needs of an office are met by...Ch. 6.11 - The label on a washing machine indicates that the...Ch. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat pump cycle is executed with R134a under the...Ch. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A refrigerator is removing heat from a cold medium...Ch. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - A typical new household refrigerator consumes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Nonearrow_forwardTwo parallel shafts whose centers are 10 meters apart are connected by an open belt drive with a V-belt with a groove angle of 30°. The diameter of the larger pulley is 1000 mm and that of the smaller pulley is 400 mm. The smaller pulley is running at 1000 rpm to deliver 10 kW of power. The mass of the belt is 1 kg/m. Taking centrifugal tension into account, determine the minimal cross-sectional area if the allowable tensile stress of the belt is 5 MPa. The coefficient of friction between the belt and the pulleys is 0.25.arrow_forwardA Carnot heat pump is used to maintain the temperature inside a building at 20 ∘C. Significantly, the colder it gets outside, the more heat is lost through the walls and windows of the building. Assume that 45 kW of heat are lost for each degree difference between the outside and the inside temperature. That means that the colder it gets, the harder the heat pump will need to work. However, for safety reasons, the controller circuit for the heat pump limits its electrical power consumption to 195 kW. What's the coldest it can get outside before the heat pump can't maintain the building temperature adequately?arrow_forward
- A perpetual motion machine is a machine that never stops, hence its name. It is a machine that can perpetually do work without needing an energy source. Do you think perpetual motion machines can ever exist? Why or why not?arrow_forwardAn electric home stove with 3 burners and microwave is used in preparing a meal as follows. Burner 1: 20 minutes Burner 2: 40 minutes Burner 3: 15 minutes . Microwave: 30 minutes. If each burner is rated at 1.2 kW and the oven at 1.8 kW, and electricity costs 1000 (IQ =Iraqi Dinar) per k Wh, calculate the cost of electricity used in preparing the meal?arrow_forwardIf a house needs a minimum heat transfer rate of 75 kJ/h (i.e., 75 kJ of heat needs to be transferred into the house during one hour) to maintain a pleasant indoor temperature. If one wants to use a heat pump with a COP of 5.55 to fulfill this heat transfer rate, what is the corresponding electricity (in kWh) consumption to run such a heat pump for one hour?arrow_forward
- A heat engine operates between thermal energy stores at 800 ° C and 20 ° C. Half of the power generated by the heat engine drives the Carnot heat pump, which is used to heat a house. While the interior temperature of the house is 22 ° C, the outside temperature is 2 ° C, the heat loss of the house is 62000 kJ / h. In these conditions, calculate the minimum heat that should be given to the heat machine per unit time as kW.arrow_forwardExamine the performance of engineering devices in light of the second law of thermodynamics.arrow_forwardA heat pump with a coefficient of performance of 3.5 provides energy at an average rate of 70,000 kJ/h to maintain a building at 20 deg C on a day when the outside temperature is -5 deg C. If electricity costs 8.5 cents per kWh, (a) determine the actual operating cost and the minimum theoretical operating cost, each in $/day. (b) compare the results of part (a) with the cost of electrical-resistance heating.arrow_forward
- For a refrigerator with automatic defrost and a top-mounted freezer, the electric power required is approximately 450 watts to operate. If the coefficient of performance is 3.2, Evaluating electricity at $0.15/kW⋅h, and assuming the unit runs 75% of the time, estimate the cost of one month's operation, in $.arrow_forwardBy supplying energy to a house at a rate of 25,000 kJ/hr, a heat pump maintains the temperature of the dwelling at 20 C when the outside air is at -10 C. If electricity costs 8 cents per kW-hr, determine the minimum theoretical operating cost to heat the house for 24 hours. $1.97 O $1.37 $1.75 O $1.51 O$1.64arrow_forwardIf the energy crossing the boundary of a closed system is not heat, it must be work?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Work, Energy, and Power: Crash Course Physics #9; Author: CrashCourse;https://www.youtube.com/watch?v=w4QFJb9a8vo;License: Standard YouTube License, CC-BY
Different Forms Of Energy | Physics; Author: Manocha Academy;https://www.youtube.com/watch?v=XiNx7YBnM-s;License: Standard Youtube License