CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.11, Problem 100P
An air-conditioning system operating on the reversed Carnot cycle is required to transfer heat from a house at a rate of 750 kJ/min to maintain its temperature at 24°C. If the outdoor air temperature is 35°C, determine the power required to operate this air-conditioning system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ces
An air-conditioning system operating on the reversed Carnot cycle is required to transfer heat from a house at a rate of 760 kJ/min to
maintain its temperature at 24°C. If the outdoor air temperature is 35°C, determine the power required to operate this air-conditioning
system.
The power required to operate this air-conditioner system is
kW.
A typical 200-m2 house can be cooled adequately by a 3.5-ton air conditioner whose COP is 4.0. Determine the rate of heat gain of the house when the air conditioner is running continuously to maintain a constant temperature in the house.
An automotive air conditioner produces a 3.000-kW cooling effect while consuming 0.75 kW of power. What is the rate at which heat is
rejected from this air conditioner?
The rate at which heat is rejected from the air conditioner is
KW
Chapter 6 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 6.11 - A mechanic claims to have developed a car engine...Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - Prob. 7PCh. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Baseboard heaters are basically electric...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - A heat engine has a total heat input of 1.3 kJ and...Ch. 6.11 - A steam power plant receives heat from a furnace...Ch. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A heat engine that propels a ship produces 500...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Solar energy stored in large bodies of water,...Ch. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - Prob. 27PCh. 6.11 - Prob. 29PCh. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 31PCh. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - The coefficient of performance of a residential...Ch. 6.11 - A food freezer is to produce a 5-kW cooling...Ch. 6.11 - An automotive air conditioner produces a 1-kW...Ch. 6.11 - A food refrigerator is to provide a 15,000-kJ/h...Ch. 6.11 - Prob. 44PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 46PCh. 6.11 - A heat pump with a COP of 1.4 is to produce a...Ch. 6.11 - An air conditioner removes heat steadily from a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Water enters an ice machine at 55F and leaves as...Ch. 6.11 - A refrigerator is used to cool water from 23 to 5C...Ch. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - A house that was heated by electric resistance...Ch. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - Refrigerant-134a enters the evaporator coils...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 60PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 71PCh. 6.11 - Prob. 72PCh. 6.11 - Prob. 73PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - You are an engineer in an electric-generation...Ch. 6.11 - Prob. 78PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A completely reversible heat engine operates with...Ch. 6.11 - An inventor claims to have developed a heat engine...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - An experimentalist claims that, based on his...Ch. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - Prob. 89PCh. 6.11 - Prob. 90PCh. 6.11 - Prob. 91PCh. 6.11 - Prob. 92PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - Determine the minimum work per unit of heat...Ch. 6.11 - Prob. 99PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A heat pump operates on a Carnot heat pump cycle...Ch. 6.11 - An air-conditioning system is used to maintain a...Ch. 6.11 - A Carnot refrigerator absorbs heat from a space at...Ch. 6.11 - Prob. 104PCh. 6.11 - A Carnot refrigerator operates in a room in which...Ch. 6.11 - Prob. 106PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 108PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A completely reversible heat pump has a COP of 1.6...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 113PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Calculate and plot the COP of a completely...Ch. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - Prob. 118PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 120PCh. 6.11 - Prob. 121PCh. 6.11 - Prob. 122PCh. 6.11 - It is commonly recommended that hot foods be...Ch. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 125RPCh. 6.11 - Prob. 126RPCh. 6.11 - Prob. 127RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 132RPCh. 6.11 - Consider a Carnot heat-engine cycle executed in a...Ch. 6.11 - Prob. 134RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Prob. 137RPCh. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 141RPCh. 6.11 - Prob. 142RPCh. 6.11 - Prob. 143RPCh. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 145RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - Prob. 149RPCh. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 153RPCh. 6.11 - Prob. 155RPCh. 6.11 - Prob. 156RPCh. 6.11 - Prob. 157RPCh. 6.11 - Prove that a refrigerators COP cannot exceed that...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - A window air conditioner that consumes 1 kW of...Ch. 6.11 - The drinking water needs of an office are met by...Ch. 6.11 - The label on a washing machine indicates that the...Ch. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat pump cycle is executed with R134a under the...Ch. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A refrigerator is removing heat from a cold medium...Ch. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - A typical new household refrigerator consumes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A dairy-barn requires a cooler for milk and hot water for washing. A combination unit states that it combines these two functions for about the same cost as just running refrigeration for separate units by using the waste heat from refrigeration to heat the water. This combination unit takes 15 kJ/s from a milk cooler at -2°C and discards heat through a condenser at 65°C to raise the temperature of water from 13 to 63°C. The conventional 2 unit set-up takes the same amount of heat from the same milk cooler at -2°C and discards heat through a condenser at 50°C; in addition, the same amount of water is heated electrically from 13 to 63°C. Estimate the total electric power requirements for the combination unit case and the conventional 2 unit case. Assume the actual work in both is 50% greater than required by Carnot refrigerators operating between the given temperatures.arrow_forwardQ13: The structure of a house is such that it loses heat at a rate of 5400 kJ/h per °C difference between the indoors and outdoors. A heat pump that requires a power input of 6 kW is used to maintain this house at 21°C. Determine the lowest outdoor temperature for which the heat pump can meet the heating requirements of this house.arrow_forwardDr. Eismann placed a refrigerator in his office. Since then he didn't touch the refrigerator. The refrigerator consumes electricity of 100 kJ per day. The refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapor-compression refrigeration cycle between 0.12 and 0.9 MPa. Determine the amount of energy this refrigerator supplies to Dr. Eismann's office per day after the second day.arrow_forward
- A refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapor compression refrigeration cycle between 0.18 and 0.7 MPa. The mass flow rate of the refrigerant is 72.4 g/s. Determine the power input to the compressor (in kW). Do not answer in image formatarrow_forward3. A heat engine operates between two reservoirs at 700°C and 20°C. One-half of the work output of the heat engine is used to drive a Carnot heat pump that removes heat from the cold surroundings at 2°C and transfers it to a house maintained at 22°C. If the house is losing heat at a rate of 52,000 kJ/h, determine the minimum rate of heat supply to the heat engine required to keep the house at 22°C.arrow_forwardA vapor compression refrigeration system is designed to have a capacity of 100 tons of refrigeration. It produces chilled water from 23C to 2C. Its actual coefficient of performance is 5.96 and 35% of the power supplied to the compressor is lost in the form of friction and cylinder cooling losses. Determine the condenser cooling water required in kg/s for temperature rise of 10C.arrow_forward
- Professor Modyn wants to power his refrigerator with a heat engine. A Carnot heat engine receives heat from a reservoir at 543.0 ∘C543.0 ∘C at a rate of 820 kJ/min820 kJ/min and rejects heat to the ambient air at 31.1 ∘C.31.1 ∘C. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at −3.23 ∘C−3.23 ∘C and transfers it to the same ambient air at 31.1 ∘C.31.1 ∘C. Note: The IUPAC sign conversion for work is used. Work into the system has a positive value. Determine the maximum rate of heat removal from the refrigerated space (kW) Determine the total rate of heat rejection to the ambient air. Heat rejection is a negative value. Account for both the heat engine and refrigerator.arrow_forwardRefrigerant as a work fluid to keep an environment at 25 ° C. A heat pump using 134a is used. The heat pump keeps heat entering the evaporator at a temperature of 50 ° C. and 2,718 kW of heat from the geothermal water that comes out of the evaporator at 40 ° C. Cooler fluid enters the evaporator at 15% dryness at 20 ° C and saturated at the same pressure comes out as steam. Since the compressor consumes 1.2 kW of power; a-) Mass flow rate of the refrigerant, b-) The heat provided for heating purposes per unit time, c-) COP value of the heat pump, d-) Find the minimum power required for the compressor in case of providing the same amount of heat.arrow_forwardb) On a winter day when the average outdoor temperature remains at about 4°C, the house is estimated to lose heat at a rate of 62,000 kJ/h. For this reason a Carnot heat pump is used to heat a house and maintain it at 23°C. If the heat pump consumes 6 kW of power while operating, determine (a) how long the hecat pump ran on that day: (b) the amount of heat removed from surounding (Q.); and (c) the total heating costs, assuming an average price of 6.5¢/kWh for electricity (d) the heating cost for the day if res istance heating is used instead of a heat pump assuming an average price of 6.5¢/kWh for clectricity.arrow_forward
- An air-conditioning system operating on the reversed Carnot cycle is required to remove heat from the house at a rate of 32 kJ/s to keep its temperature constant at 20°C. If the temperature of the outdoors is 35°C, the power required to operate this air-conditioning system is (a) 0.58 kW (b) 3.20 kW (c) 1.56 kW (d) 2.26 kW (e) 1.64 kWarrow_forwardA food compartment is to be maintained at 21°C by a refrigeration system. The total cooling load of the food compartment is estimated to be 330 kJ/h and the heat rejection by the condenser is 480 kJ/h. The outdoor air temperature is 35°C. draw the schematic diagram of the refrigeration system determine the power input required to operate the refrigeration system in kW.arrow_forwardA refrigerated room is kept at −18◦C by a vapor-compression cycle with R-134a as the refrigerant. Heat is rejected to cooling water that enters the condenser at 14◦C at a rate of 0.35 kg/s and leaves at 22◦C. The refrigerant enters the condenser at 1.2MPa and 50◦C and leaves at the same pressure subcooled by 5◦C. If the compressor consumes 5.5 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the refrigeration load and the COP, (c) the second-law efficiency of the refrigerator and the total exergy destruction in the cycle, and (d) the exergy destruction in the condenser. Take specific heat of water to be 4.18 kJ/kg·◦C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY