Bundle: Chemistry: The Molecular Science, 5th, Loose-Leaf + OWLv2 with Quick Prep 24-Months Printed Access Card
5th Edition
ISBN: 9781305367487
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 92QRT
Methylcyanoacrylate is the active ingredient in “super” glues. Its Lewis structure is
In this molecule, which is the
- (a) weakest carbon-containing bond?
- (b) strongest carbon-containing bond?
- (c) most polar bond?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A resident expert on electronegativity comes up to visit with you. He makes two claims (seen below) about electronegativity with relation to covalent bonding. Is the expert correct or can you refute him with your knowledge of electronegativity?
(a) If a diatomic molecule is made up of atoms X and Y, which have different electronegativities, the molecule must be polar.
(b) The farther two atoms are apart in a bond, the larger the dipole moment will be.
Consider the formate ion, HCO2", which is the anion
formed when formic acid loses an H* ion. The H and
the two O atoms are bonded to the central C atom.
(a) Draw the best Lewis structure(s) for this ion.
(b) Are resonance structures needed to describe the
structure? Explain briefly
(c) Would you predict that the C-O bond lengths in
the formate ion would be longer or shorter relative to
those in CO2? Explain briefly
3) For each of the compounds MgO, Br2 and HBr:(a) What are the two atoms that formed each molecule?(b) What is their electronegativity difference between the atoms in each molecule?(c) What type of bond is formed in each molecule?(d) Are the electrons shared or transferred between the atoms in each molecule?
Chapter 6 Solutions
Bundle: Chemistry: The Molecular Science, 5th, Loose-Leaf + OWLv2 with Quick Prep 24-Months Printed Access Card
Ch. 6.2 - Write Lewis structures for (a) NF3, (b) N2H4, and...Ch. 6.3 - Prob. 6.1ECh. 6.3 - Prob. 6.2PSPCh. 6.4 - Prob. 6.2CECh. 6.4 - Write Lewis structures for (a) nitrosyl ion, NO+;...Ch. 6.5 - Prob. 6.4CECh. 6.5 - Prob. 6.5CECh. 6.5 - Prob. 6.4PSPCh. 6.6 - Prob. 6.5PSPCh. 6.6 - Use Equation 6.1 and values from Table 6.2 to...
Ch. 6.6 - Prob. 6.6CECh. 6.7 - Prob. 6.7PSPCh. 6.7 - Prob. 6.7CECh. 6.8 - Prob. 6.8PSPCh. 6.9 - Prob. 6.9PSPCh. 6.9 - Prob. 6.9CECh. 6.10 - Prob. 6.10PSPCh. 6.11 - Prob. 6.10ECh. 6.11 - Prob. 6.11ECh. 6.11 - Prob. 1CECh. 6.11 - Prob. 2CECh. 6.12 - Repeat Problem-Solving Example 6.11, but use N2...Ch. 6.12 - Use MO theory to predict the bond order and the...Ch. 6 - Prob. 1QRTCh. 6 - Prob. 2QRTCh. 6 - Prob. 3QRTCh. 6 - Prob. 4QRTCh. 6 - Prob. 5QRTCh. 6 - Prob. 6QRTCh. 6 - Which of these molecules have an odd number of...Ch. 6 - Prob. 8QRTCh. 6 - Prob. 9QRTCh. 6 - Prob. 10QRTCh. 6 - Prob. 11QRTCh. 6 - Prob. 12QRTCh. 6 - Explain in your own words why the energy of two H...Ch. 6 - Prob. 14QRTCh. 6 - Prob. 15QRTCh. 6 - Prob. 16QRTCh. 6 - Prob. 17QRTCh. 6 - Prob. 18QRTCh. 6 - Prob. 19QRTCh. 6 -
Write Lewis structures for
tetracyanoethene,...Ch. 6 - Prob. 21QRTCh. 6 - Prob. 22QRTCh. 6 - Prob. 23QRTCh. 6 - Prob. 24QRTCh. 6 - Prob. 25QRTCh. 6 - Prob. 26QRTCh. 6 - Prob. 27QRTCh. 6 - Prob. 28QRTCh. 6 - Prob. 29QRTCh. 6 - For each pair of bonds, predict which is the...Ch. 6 - Prob. 31QRTCh. 6 - Prob. 32QRTCh. 6 - Which bond requires more energy to break: the...Ch. 6 -
Estimate ΔrH° for forming 2 mol ammonia from...Ch. 6 - Prob. 35QRTCh. 6 - Light of appropriate wavelength can break chemical...Ch. 6 - Prob. 37QRTCh. 6 - Prob. 38QRTCh. 6 - Prob. 39QRTCh. 6 - Acrolein is the starting material for certain...Ch. 6 - Prob. 41QRTCh. 6 - Prob. 42QRTCh. 6 - Write the correct Lewis structure and assign a...Ch. 6 - Prob. 44QRTCh. 6 - Prob. 45QRTCh. 6 - Two Lewis structures can be written for nitrosyl...Ch. 6 - Prob. 47QRTCh. 6 - Prob. 48QRTCh. 6 - Prob. 49QRTCh. 6 - Prob. 50QRTCh. 6 - Several Lewis structures can be written for...Ch. 6 - Prob. 52QRTCh. 6 - Prob. 53QRTCh. 6 - Prob. 54QRTCh. 6 - Prob. 55QRTCh. 6 - Draw resonance structures for each of these ions:...Ch. 6 - Three known isomers exist of N2CO, with the atoms...Ch. 6 - Write the Lewis structure for (a) BrF5 (b) IF5 (c)...Ch. 6 - Write the Lewis structure for
BrF3
XeF4
Ch. 6 - Prob. 60QRTCh. 6 - Prob. 61QRTCh. 6 - Prob. 62QRTCh. 6 - All carbon-to-carbon bond lengths are identical in...Ch. 6 - Prob. 64QRTCh. 6 - Prob. 65QRTCh. 6 - Prob. 66QRTCh. 6 - Prob. 67QRTCh. 6 - Prob. 68QRTCh. 6 - Prob. 69QRTCh. 6 - Prob. 70QRTCh. 6 - Using just a periodic table (not a table of...Ch. 6 - The CBr bond length in CBr4 is 191 pm; the BrBr...Ch. 6 - Prob. 73QRTCh. 6 -
Acrylonitrile is the building block of the...Ch. 6 - Prob. 75QRTCh. 6 - Write Lewis structures for (a) SCl2 (b) Cl3+ (c)...Ch. 6 - Prob. 77QRTCh. 6 - Prob. 78QRTCh. 6 - A student drew this incorrect Lewis structure for...Ch. 6 - This Lewis structure for SF5+ is drawn...Ch. 6 - Tribromide, Br3, and triiodide, I3, ions are often...Ch. 6 - Explain why nonmetal atoms in Period 3 and beyond...Ch. 6 - Prob. 83QRTCh. 6 - Prob. 84QRTCh. 6 - Prob. 85QRTCh. 6 - Prob. 86QRTCh. 6 - Which of these molecules is least likely to exist:...Ch. 6 - Write the Lewis structure for nitrosyl fluoride,...Ch. 6 - Prob. 91QRTCh. 6 - Methylcyanoacrylate is the active ingredient in...Ch. 6 - Aspirin is made from salicylic acid, which has...Ch. 6 - Prob. 94QRTCh. 6 - Prob. 95QRTCh. 6 - Prob. 96QRTCh. 6 - Prob. 97QRTCh. 6 - Prob. 98QRTCh. 6 - Nitrosyl azide, N4O, is a pale yellow solid first...Ch. 6 - Write the Lewis structures for (a) (Cl2PN)3 (b)...Ch. 6 - Nitrous oxide, N2O, is a linear molecule that has...Ch. 6 - The azide ion, N3, has three resonance hybrid...Ch. 6 - Hydrazoic acid, HN3, has three resonance hybrid...Ch. 6 - Prob. 104QRTCh. 6 - Experimental evidence indicates the existence of...Ch. 6 - Prob. 106QRTCh. 6 - Prob. 107QRTCh. 6 - Pipeline, the active ingredient in black pepper,...Ch. 6 - Sulfur and oxygen form a series of 2 anions...Ch. 6 - Prob. 110QRTCh. 6 - Prob. 111QRTCh. 6 - Prob. 112QRTCh. 6 - Prob. 113QRTCh. 6 - Prob. 114QRTCh. 6 - Prob. 115QRTCh. 6 - Prob. 116QRTCh. 6 - Prob. 117QRTCh. 6 - Prob. 118QRTCh. 6 - Prob. 6.ACPCh. 6 - Prob. 6.BCPCh. 6 - Prob. 6.CCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Write the Lewis structure for nitrosyl fluoride, FNO. Using only a periodic table, identify (a) which is the longer bond. (b) which is the stronger bond. (c) which is the more polar bond.arrow_forwardGiven the bonds C N, C H, C Br, and S O, (a) which atom in each is the more electronegative? (b) which of these bonds is the most polar?arrow_forwardAcrolein is the starting material for certain plastics. (a) Which bonds in the molecule are polar and which are nonpolar? (b) Which is the most polar bond in the molecule? Which atom is the partial negative end of this bond?arrow_forward
- 10.) The structural formula of a certain aldehyde (related to formaldehyde) is H3C-CH2-CHO. Draw a Lewis structure for this aldehyde and determine the number of bonds present. Note that a single or a double or a triple bond counts as one bond. Write the number, not the word.arrow_forwardConsider lisinopril, a drug used primarily in the treatment of high blood pressure, heart failure, and after heart attacks. (a) Complete the Lewis structure of lisinopril, showing all valence electrons. (b) Use the valence-shell electron-pair repulsion (VSEPR) model (Section 3.10) to predict all bond angles in lisinopril. (c) Which is the most polar bond in lisinopril? (d) Is lisinopril polar or nonpolar? (e) Is lisinopril expected to possess resonance (Section 3.9)? Explain why or why not. (f) Name the various functional groups in lisinopril. (g) What is the molecular formula of lisinopril? (h) What intermolecular forces are expected to exist between molecules of lisinopril in close proximity to one another (Section 5.7)?arrow_forwardConsider lisinopril, a drug used primarily in the treatment of high blood pressure, heart failure, and after heart attacks. (a) Complete the Lewis structure of lisinopril, showing all valence electrons. (b) Use the valence-shell electron-pair repulsion (VSEPR) model (Section 3.10) to predict all bond angles in lisinopril. (c) Which is the most polar bond in lisinopril? (d) Is lisinopril polar or nonpolar? (e) Is lisinopril expected to possess resonance (Section 3.9)? Explain why or why not. (f) Name the various functional groups in lisinopril. (g) What is the molecular formula of lisinopril? (h) What intermolecular forces are expected to exist between molecules of lisinopril in close proximity to one another (Section 5.7)?arrow_forward
- 3. How many valence electrons are in a C atom? an Cl atom? (a) Write the full Lewis structure for the CH2C2 molecule. Show all lone pairs. Pert (b) Write the geometric structure for the CH2CI2 molecule and name the geometry. (c) Determine if the CH2CI2 molecule has polar or nonpolar bonds using the following electronegativity: C = 2.5, H = 2.1, CI = 3.0. Re-draw the geometric structure below, but this time include partial charges and dipole arrows for any polar bonds present. Justify your assignments for polar or nonpolar bonds.arrow_forward3. Consider the four compounds BB33, CB14, NB13, and Br,O. Use periodic trends in bond lengths and the electronegativity table in Chang to answer the following questions: (a) Which molecule is expected to have the longest bonds? (b) Which molecule is expected to have the most polar bonds? (c) Which molecule is expected to have the least polar bonds?arrow_forwardAnswer true or false. (a) According to the Lewis model of bonding, atoms bond together in such a way that each atom par- ticipating in the bond acquires an outer-shell electron configuration matching that of the noble gas nearest to it in atomic number. (b) Atoms that lose electrons to achieve a filled valence shell become cations and form ionic bonds with anions. (c) Atoms that gain electrons to achieve filled valence shells become anions and form ionic bonds with cations. (d) Atoms that share electrons to achieve filled valence shells form covalent bonds. (e) Ionic bonds tend to form between elements on the left side of the Periodic Table, and covalent bonds tend to form between elements on the right side of the Periodic Table. (f) Ionic bonds tend to form between a metal and a nonmetal. (g) When two nonmetals combine, the bond between them is usually covalent. (h) Electronegativity is a measure of an atom’s attrac- tion for the electrons it shares in a chemical bond with another…arrow_forward
- What is the structural diagram of CH2ClF without lone pairs? Also what is its Electronegativity bond after you subtract the smaller from the greater value along with its bond type, total lone pairs of electrons and total bonding pairs of electrons? Lastly, is it polar or non polar (polar molecularity) ?arrow_forwardH. H. H. H. H. The diagram above shows two resonance structures for a molecule of C6H6. The phenomenon shown in the diagram best supports which of the following claims about the bonding in C6H6 ? (A) In the C6H6 molecule, all the bonds between the carbon atoms have the same length. (B) Because of variable bonding between its carbon atoms, C6H6 is a good conductor of electricity. (C) The bonds between carbon atoms in C6H6 are unstable, and the compound decomposes quickly. The C6H6 molecule contains three single bonds between carbon atoms and three double bonds between (D) carbon atoms. IIUarrow_forwardThis question has multiple parts : Chloroform is a powerful anesthetic and sedative when inhaled or ingested . Its chemical formula is CHCl 3 . ( Cl is chlorine ) (a) Determine the total number of valence electrons for this compound . (b) Based on your structure and VSEPR theory, what is its shape? (dIs the C-blond polar or nonpolar? How do you know? (c) Is the entire molecule polar or nonpolar ? How do you know?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY